Skip to main content

Advertisement

Log in

Fibrinogen induces endothelial cell permeability

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Many cardiovascular and cerebrovascular disorders are accompanied by an increased blood content of fibrinogen (Fg), a high molecular weight plasma adhesion protein. Fg is a biomarker of inflammation and its degradation products have been associated with microvascular leakage. We tested the hypothesis that at pathologically high levels, Fg increases endothelial cell (EC) permeability through extracellular signal regulated kinase (ERK) signaling and by inducing F-actin formation. In cultured ECs, Fg binding to intercellular adhesion molecule-1 and to α5β1 integrin, caused phosphorylation of ERK. Subsequently, F-actin formation increased and coincided with formation of gaps between ECs, which corresponded with increased permeability of ECs to albumin. Our data suggest that formation of F-actin and gaps may be the mechanism for increased albumin leakage through the EC monolayer. The present study indicates that elevated un-degraded Fg may be a factor causing microvascular permeability that typically accompanies cardiovascular and cerebrovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huxley V, Curry F (1995) Albumin modulation of capillary permeability: test of an adsorption mechanism. Am J Physiol 248(2 Pt 2):H264–H273

    Google Scholar 

  2. Huxley V, Curry F (1987) Effect of superfusate albumin on single capillary hydraulic conductivity. Am J Physiol Heart Circ Physiol 252(2 Pt 2):H395–H401

    CAS  Google Scholar 

  3. Mehta D, Malik A (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367

    Article  PubMed  CAS  Google Scholar 

  4. Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB et al (2005) Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294(14):1799–1809

    Article  PubMed  CAS  Google Scholar 

  5. Ross R (1999) Mechanisms of disease – Atherosclerosis – An inflammatory disease. N Engl J Med 340(2):115–126

    Article  PubMed  CAS  Google Scholar 

  6. Chae C, Lee R, Rifai N, Ridker P (2001) Blood pressure and inflammation in apparently healthy men. Hypertension 38(3):399–403

    PubMed  CAS  Google Scholar 

  7. Ernst E, Resch K (1993) Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 118:956–963

    PubMed  CAS  Google Scholar 

  8. Letcher R, Chien S, Pickering T, Sealey J, Laragh J (1981) Direct relationship between blood pressure and blood viscosity in normal and hypertensive subject: role of fibrinogen and concentration. Am J Med 70:1195–1202

    Article  PubMed  CAS  Google Scholar 

  9. Lominadze D, Joshua I, Schuschke D (1998) Increased erythrocyte aggregation in spontaneously hypertensive rats. Am J Hypertens 11:784–789

    Article  PubMed  CAS  Google Scholar 

  10. Lee AJ, Lowe GD, Woodward M, Tunstall-Pedoe H (1993) Fibrinogen in relation to personal history of prevalent hypertension, diabetes, stroke, intermittent claudication, coronary heart disease, and family history: The Scottish Heart Health Study. Br Heart J 69(4):338–342

    Article  PubMed  CAS  Google Scholar 

  11. D’Erasmo E, Acca M, Celi F, Medici F, Palmerini T, Pisani D (1993) Plasma fibrinogen and platelet count in stroke. J Med 24(2–3):185–191

    PubMed  CAS  Google Scholar 

  12. Martinez J, Holburn R, Shapiro S, Erslev A (1974) Fibrinogen Philadelphia: a hereditary hypodysfibrinogenemia characterized by fibrinogen hypercatabolism. J Clin Invest 5:600–611

    Google Scholar 

  13. Humphries S (1995) Genetic regulation of fibrinogen. Eur Heart J 16:16–20

    PubMed  CAS  Google Scholar 

  14. Vasse M, Paysant J, Soria J, Collet J, Vannier J, Soria C (1996) Regulation of fibrinogen biosynthesis by cytokines, consequences on the vascular risk. Haemostasis 26(Suppl 4):331–339

    PubMed  CAS  Google Scholar 

  15. Nakamura A, Kohsaka T, Johns E (1996). Neuro-regulation of interleukin-6 gene expression in the spontaneously hypertensive rat kidney. J Hypert 14(7):839–845

    Article  CAS  Google Scholar 

  16. Tikkanen I, Uhlenius N, Tikkanen T, Miettinen A, Tornroth T, Fyhrquist F et al (1995) Increased renal expression of cytokines and growth factors induced by DOCA-NaCl treatment in Heymann nephritis. Nephrol Dial Transplant 10(12):2192–2198

    PubMed  CAS  Google Scholar 

  17. Yudkin J, Kumari M, Humphries S, Mohamed-Ali V (1999) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148(2):209–214

    Article  Google Scholar 

  18. Dalekos G, Elisaf M, Papagalanis N, Tzallas C, Siamopoulos K (1996) Elevated interleukin-1 beta in the circulation of patients with essential hypertension before any drug therapy: a pilot study. Eur J Clin Invest 26(10):936–939

    PubMed  CAS  Google Scholar 

  19. Kannan H, Tanaka Y, Kunitake T, Ueta Y, Hayashida Y, Yamashita H (2000) Activation of sympathetic outflow by recombinant human interleukin-1 beta in conscious rats. Am J Physiol 270(2 Pt.2):R479–R485

    Google Scholar 

  20. Gaffney P (2001) Fibrin degradation products: a review of structures found in vitro and in vivo. Ann N Y Acad Sci 936(1):594–610

    Article  PubMed  CAS  Google Scholar 

  21. Ge M, Tang G, Ryan T, Malik A (1992) Fibrinogen degradation product fragment D induces endothelial cell detachment by activation of cell-mediated fibrinolysis. J Clin Invest 90(6):2508–2516

    PubMed  CAS  Google Scholar 

  22. Bosso F, Lang S, Maron M (1990) Role of hemodynamics and vagus nerves in development of fibrin-induced pulmonary edema. J Appl Physiol 69(6):2227–2232

    PubMed  CAS  Google Scholar 

  23. Trepat X, Grabulosa M, Buscemi L, Rico F, Farre R, Navajas D (2005) Thrombin and histamine induce stiffening of alveolar epithelial cells. J Appl Physiol 98(4):1567–1574

    Article  PubMed  CAS  Google Scholar 

  24. Bogatcheva N, Garcia J, Verin A (2002). Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67(1):75–84

    Article  CAS  Google Scholar 

  25. Plow E, Haas T, Zhang L, Loftus J, Smith J (2000). Ligand binding to integrins. J Biol Chem 275(29):21785–21788

    Article  PubMed  CAS  Google Scholar 

  26. D’Souza S, Byers-Ward V, Gardiner E, Wang H, Sung S-S (1996) Identification of an active sequence within the first immunoglobulin domain of intercellular cell adhesion molecule-1 (ICAM-1) that interacts with fibrinogen. J Biol Chem 271(39):24270–24277

    Article  PubMed  CAS  Google Scholar 

  27. Luscinskas F, Lawler J (1994) Integrins as dynamic regulators of vascular function. FASEB J 8(12):929–938

    PubMed  CAS  Google Scholar 

  28. Lominadze D, Tsakadze N, Sen U, Falcone J, D’Souza S (2005) Fibrinogen- and fragment D-induced vascular constriction. Am J Physiol 288(3):H1257–H1264

    CAS  Google Scholar 

  29. Mogford J, Davis G, Meininger G (1997) RGDN peptide interaction with endothelial β1 integrin causes sustained endothelin-dependent vasoconstriction to rat skeletal muscle arterioles. J Clin Invest 100(6):1647–1653

    Article  PubMed  CAS  Google Scholar 

  30. Rivas G, Fernandez J, Minton A (1999) Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance. Biochemistry 38(29):9379–9388

    Article  PubMed  CAS  Google Scholar 

  31. Cooper J, Del Vecchio P, Minnear F, Burhop K, Selig W, Garcia J et al (1987) Measurement of albumin permeability across endothelial monolayers in vitro. J Appl Physiol 62(3):1076–1083

    PubMed  CAS  Google Scholar 

  32. Bogatcheva N, Garcia J, Verin A (2002) Role of tyrosine kinase signaling in endothelial cell barrier regulation. Vascul Pharmacol 39(4–5):201–212

    Article  PubMed  CAS  Google Scholar 

  33. Qiao R, Yan W, Lum H, Malik A (1995) Arg-Gly-Asp peptide increases endothelial hydraulic conductivity: comparison with thrombin response. Am J Physiol Cell Physiol 269(1):C110–C117

    CAS  Google Scholar 

  34. Lominadze D, Roberts A, Tyagi N, Tyagi S (2006) Homocysteine causes cerebrovascular leakage in mice. Am J Physiol Heart Circ Physiol 290(3):H1206–H1213

    Article  PubMed  CAS  Google Scholar 

  35. Lominadze D, Saari J, Percival S, Schuschke D (2004) Proinflammatory effects of copper deficiency on neutrophils and lung endothelial cells. Immunol Cell Biol 82(3):231–238

    Article  PubMed  CAS  Google Scholar 

  36. Moshal K, Singh M, Sen U, Rosenberger D, Henderson B, Tyagi N et al (2006) Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 291(6):H2825–H2835

    Article  PubMed  CAS  Google Scholar 

  37. Tyagi N, Ovechkin A, Lominadze D, Moshal K, Tyagi S (2006) Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. J Cell Biochem 98(5):1150–1162

    Article  PubMed  CAS  Google Scholar 

  38. Ehringer W, Yamany S, Steier K, Farag A, Roisen F, Dozier A et al (1999) Quantitative image analysis of F-actin in endothelial cells. Microcirculation 6(4):291–303

    Article  PubMed  CAS  Google Scholar 

  39. Lampugnani M, Resnati M, Dejana E, Marchisio P (1991) The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol 112(3):479–490

    Article  PubMed  CAS  Google Scholar 

  40. Suehiro K, Gailit J, Plow E (1997) Fibrinogen is a ligand for integrin α5β1 on endothelial cells. J Biol Chem 272(8):5360–5366

    Article  PubMed  CAS  Google Scholar 

  41. Curtis T, Keown-Longo P, Vincent P, Homan S, Wheatley E, Saba T (1995) Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-alpha 5 beta 1, or TNF-alpha exposure. Am J Physiol Lung Cell Mol Physiol 269(2):L248–L260

    CAS  Google Scholar 

  42. Harley S, Sturge J, Powell J (2000) Regulation by fibrinogen and its products of intercellular adhesion molecule-1 expression in human saphenous vein endothelial cells. Arterioscl Thromb Vasc Biol 20(3):652–658

    PubMed  CAS  Google Scholar 

  43. Kolch W (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351 (Pt 2):289–305

    Article  PubMed  CAS  Google Scholar 

  44. Alessi D, Cuenda A, Cohen P, Dudley D, Saltiel A (1995) PD 098059 Is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270(46):27489–27494

    Article  PubMed  CAS  Google Scholar 

  45. Favata M, Horiuchi K, Manos E, Daulerio A, Stradley D, Feeser W et al (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273(29):18623–18632

    Article  PubMed  CAS  Google Scholar 

  46. Giancotti F, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032

    Article  PubMed  CAS  Google Scholar 

  47. Shyy J-J, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91(9):769–775

    Article  PubMed  CAS  Google Scholar 

  48. Bourguignon L, Gilad E, Rothman K, Peyrollier K (2005) Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK pignaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 280(12):11961–11972

    Article  PubMed  CAS  Google Scholar 

  49. Plusokota E, D’Souza S (2000) Fibrinogen interactions with ICAM-1 (CD54) regulate endothelial cell survival. Eur J Biochem 267(15):4693–4704

    Article  Google Scholar 

  50. Gordon S, Lominadze D, Saari J, Lentsch A, Schuschke D (2005) Impaired deformability of copper-deficient neutrophils. Exp Biol Med 230:543–548

    CAS  Google Scholar 

  51. Leoni L, Boiarski A, Desai TA (2002) Characterization of nanoporous membranes for immunoisolation: Diffusion properties and tissue effects. Biomed Microdevices 4(2):131–139

    Article  Google Scholar 

  52. John T, Vogel S, Tiruppathi C, Malik A, Minshall R (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284(1):L187–L196

    PubMed  CAS  Google Scholar 

  53. Predescu D, Palade G (1993) Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol Heart Circ Physiol 265(2 Pt 2):H725–H733

    CAS  Google Scholar 

  54. Minshall R, Tiruppathi C, Vogel S, Niles W, Gilchrist A, Hamm H et al (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via Gi-coupled Src kinase signaling pathway. J Cell Biol 150(5):1057–1070

    Article  PubMed  CAS  Google Scholar 

  55. Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik A (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272(41):25968–25975

    Article  PubMed  CAS  Google Scholar 

  56. Tuma P, Hubbard A (2003) Transcytosis: Crossing cellular barriers. Physiol Rev 83(3):871–932

    PubMed  CAS  Google Scholar 

  57. Marchant R, Kang I, Sit P, Zhou Y, Todd B, Eppell S et al (2002) Molecular views and measurements of hemostatic processes using atomic force microscopy. Curr Protein Pept Sci 3(3):249–274

    Article  PubMed  CAS  Google Scholar 

  58. Potschka M (1987) Universal calibration of gel permeation chromatography and determination of molecular shape in solution. Ann Biochem 162(1):47–64

    Article  CAS  Google Scholar 

  59. Vink H, Duling B (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278(1):H285–H289

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in part by the AHA, 0235317N to DL and GIA to WLD; NIH, HL-80394 to DL, HL-71010, HL-74185, HL-88012 and NS-51568 to SCT; ALA, Kentucky Affiliate to AMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lominadze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, N., Roberts, A.M., Dean, W.L. et al. Fibrinogen induces endothelial cell permeability. Mol Cell Biochem 307, 13–22 (2008). https://doi.org/10.1007/s11010-007-9579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9579-2

Keywords

Navigation