Skip to main content
Log in

Biochemical characterization of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C. 3.1.4.1) from rat heart left ventricle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the present study we investigate the biochemical properties of the members of NPP family in synaptosomes prepared from rat heart left ventricles. Using p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as substrate for E-NPPs in rat cardiac synaptosomes, we observed an alkaline pH dependence, divalent cation dependence and the K M value corresponded to 91.42 ± 13.97 μM and the maximal velocity (V max ) value calculated was 63.79 ± 3.59 nmol p-nitrophenol released/min/mg of protein (mean ± SD, = 4). Levamisole (1 mM), was ineffective as inhibitor of p-Nph-5′-TMP hydrolysis in pH 8.9 (optimum pH for the enzyme characterized). Suramin (0.25 mM) strongly reduced the hydrolysis of p-Nph-5′-TMP by about 46%. Sodium azide (10 and 20 mM) and gadolinium chloride (0.3 and 0.5 mM), E-NTPases inhibitors, had no effects on p-Nph-5′-TMP hydrolysis. RT-PCR analysis of left ventricle demonstrated the expression of NPP2 and NPP3 enzymes, but excluded the presence of NPP1 member. By quantitative real-time PCR we identified the NPP3 as the enzyme with the highest expression in rat left ventricle. The demonstration of the presence of the E-NPP family in cardiac system, suggest that these enzymes could contribute with the fine-tuning control of the nucleotide levels at the nerve terminal endings of left ventricles that are involved in several cardiac pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  2. Robson S, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationship and pathophysiological significance. Puriner Signal 2:409–430

    Article  CAS  Google Scholar 

  3. Zimmermann H (2001) Ectonucleotidases: some developments and a note on nomenclature. Drug Dev Res 52:44–56

    Article  CAS  Google Scholar 

  4. Wink M, Braganhol E, Tamajusuku ASK et al (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDAse2/CD39L1) is the dominant ectonucleotidases expressed by rat astrocytes. Neuroscience 138:421–432

    Article  PubMed  CAS  Google Scholar 

  5. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. TRENDS Biochem Sci 30:542–550

    Article  PubMed  CAS  Google Scholar 

  6. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedebergs Arch Pharmacol 362:299–309

    Article  PubMed  CAS  Google Scholar 

  7. Bollen M, Gijsbers R, Ceulemans H et al (2000) Nucleotide pyrophosphatase/phophodiesterases on the move. Crit Rev Biochem Mol Biol 35:393–432

    Article  PubMed  CAS  Google Scholar 

  8. Vollmayer P, Clair T, Goding JW et al (2003) Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatase/phophodiesterases. Eur J Biochem 270:2971–2978

    Article  PubMed  CAS  Google Scholar 

  9. Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signalling by NPP-type ectophosphodiesterases. Puriner Signal 2:361–370

    Article  CAS  Google Scholar 

  10. Sakagami H, Aoki J, Natori Y et al (2005) Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J Biol Chem 280:23084–23093

    Article  PubMed  CAS  Google Scholar 

  11. Narita M, Goji J, Nakamura H et al (1994) Molecular cloning, expression, and localization of a brain-specific phosphodiesterase I/nucleotide pyrophosphatase (PD-1α) from rat brain. J Biol Chem 269:28235–28242

    PubMed  CAS  Google Scholar 

  12. Harahap AR, Goding JW (1988) Distribution of the murine plasma cell antigen PC-1 in non-lymphoid tissues. J Immunol 141:2317–2320

    PubMed  CAS  Google Scholar 

  13. Johnson K, Hashimoto S, Lotz M et al (2001) Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis Rheum 5:1071–1081

    Article  Google Scholar 

  14. Blass-Kampmann S, Kindler-Röhrborn H, Deissler H et al (1997) In vitro differentiation of neural progenitor cells from prenatal rat brain: common cell surface glycoprotein on three glial cell subsets. J Neurosci Res 48:95–111

    Article  PubMed  CAS  Google Scholar 

  15. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochem Biophys Acta 1638:1–19

    PubMed  CAS  Google Scholar 

  16. Takahashi T, Old LJ, Boyse EA (1970) Surface alloantigens of plasma cells. J Exp Med 131:1325–1341

    Article  PubMed  CAS  Google Scholar 

  17. Hessle L, Johnson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    Article  PubMed  CAS  Google Scholar 

  18. Gijsbers R, Ceulemans H, Bollen M (2003) Functional characterization of the non-catalytic ectodomains of the nucleotide pyrophosphatase/phosphodiesterase NPP1. Biochem J 371:321–330

    Article  PubMed  CAS  Google Scholar 

  19. Stracke ML, Krutzsch HC, Unsworth EJ et al (1992) Identification, purification, purification, and partial sequence analysis of autotoxin, a novel motility-stimulation protein. J Biol Chem 267:2524–2529

    PubMed  CAS  Google Scholar 

  20. Koike S, Keino-Masu K, Ohto T et al (2006) The N-terminal hydrophobic sequence of autotoxin (ENPP2) functions as a signal peptide. Genes to cells 11:133–142

    Article  PubMed  CAS  Google Scholar 

  21. Deissler H, Lottspeich F, Rajewsky MF (1995) Affinity purification and cDNA cloning of rat neural differentiation and tumor cell surface antigen gpRB13–6 reveals relationship to human and murine PC-1. J Biol Chem 270:9849–9855

    Article  PubMed  CAS  Google Scholar 

  22. Deissler H, Blass-Kampmann S, Bruyneel E et al (1999) Neural cell surface differentiation antigen gp130 (RB13–6) induces fibroblasts and glioma cells to express astroglial proteins and invasive properties. FASEB J 13:657–666

    PubMed  CAS  Google Scholar 

  23. Vassort G (2001) Adenosine 5′-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81:767–806

    PubMed  CAS  Google Scholar 

  24. Marcus AJ, Broekman MJ, Drosopoulos JHF et al (2005) Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection. Sem Thromb Hemos 31:234–246

    Article  CAS  Google Scholar 

  25. Burnstock G (2002) Potential therapeutic targets in the rapidly expanding field of purinergic signalling. Clin Med 2:45–53

    Article  PubMed  CAS  Google Scholar 

  26. Aloyo VJ, McIlvain HB, Bhavsar VH et al (1991) Characterization of norepinephrine accumulation by a crude synaptosomal-mitochondrial fraction isolated from rat heart. Life Sci 48:1317–1324

    Article  PubMed  CAS  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  28. Sakura H, Nagashima A, Maeda M (1998) Characterization of fetal serum 5′-nucleotide phosphodiesterase: a novel function as a platelet aggregation inhibitor in fetal circulation. Thromb Res 91:83–89

    Article  PubMed  CAS  Google Scholar 

  29. Vollmayer P, Koch M, Braun N et al (2001) Multiple ecto-nucleotidase in PC12 cells: identification and cellular distribution after heterologous expression. J Neurochem 78:1019–1028

    Article  PubMed  CAS  Google Scholar 

  30. Zerbini LF, Wang Y, Cho JY et al (2003) Constitutive activation of nuclear factor kB p50/p65 and Fra-1 and junD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206–2215

    PubMed  CAS  Google Scholar 

  31. Frasseto SS, Dias RD, Sarkis JJF (1993) Characterization of an ATP phyphosphohydrolase activity (APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 129:47–55

    Article  Google Scholar 

  32. Constantoupolus A, Kafasi V, Doulas N et al (1977) The effect of levamisole on phosphodiesterase activity. Experimentia 33:395–396

    Article  Google Scholar 

  33. Leal DBR, Streher CA, Neu TN et al (2005) Characterization of an NTPDase (NTPDase1; ecto-apyrase; ecto-diphophohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochem Biophys Acta 1721:9–15

    PubMed  CAS  Google Scholar 

  34. Grobben B, Claes P, Roymans D et al (2000) Ecto-nucleotide pyrophosphatase modulates the purinoceptor-mediated signal transduction and is inhibited by purinoceptor antagonists. Br J Pharmacol 130:139–145

    Article  PubMed  CAS  Google Scholar 

  35. Fürstenau CR, Trentin DS, Barreto-Chaves MLM et al (2006) Ecto-nuceotide pyrophosphatase/phosphodiesterase as part of a multiple system for nucleotide hydrolysis by platelets from rats: kinetic characterization and biochemical properties. Platelets 17:84–91

    Article  PubMed  CAS  Google Scholar 

  36. Escalada A, Navarro P, Ros E et al (2004) Gadolinium inhibition of ecto-nucleoside triphosphate diphosphohydrolase activity in Torpedo Electric Organ. Nerochem Res 29:1711–1714

    Article  CAS  Google Scholar 

  37. Burnstock G (1991) Dual control of local blood flow by purines. Ann N Y Acad Sci 603:31–44

    Article  Google Scholar 

  38. Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336:512–523

    Google Scholar 

  39. Ralevic V, Burnstock G (2003) Involvement of purinergic signalling in cardiovascular diseases. Drug News Perspect 16:133–140

    Article  PubMed  CAS  Google Scholar 

  40. Kelly SJ, Dardinger DE, Butler LG (1975) Hydrolysis of phopshonate esters catalyzed by 5′-nucleotide phosphodiesterase. Biochem 14:4983–4988

    Article  CAS  Google Scholar 

  41. Hosoda N, Hoshino S-l, Kanda Y et al (1999) Inhibition of phosphodiesterase/pyrophosphatase activity of PC-1 by its association with glycosaminoglycans. Eur J Biochem 265:763–770

    Google Scholar 

  42. Yano T, Funakoshi L, Yamasina I (1985) Purification and properties of nucleotide pyrophosphatase from human placenta. J Biochem 98:1097– 1107

    PubMed  CAS  Google Scholar 

  43. Jin-Hua P, Goding JW, Nakamura H et al (1997) Molecular cloning and chromosomal localization of PD-1beta (PNDP3), a new member of the human phosphodiesterase 1 genes. Genomics 45:412–415

    Article  PubMed  CAS  Google Scholar 

  44. Stefan C, Gijsbers R, Stalmans W et al (1999) Differential regulation of the expression of nucleotide pyrophosphatases/phosphodiesterases in rat liver. Biochim Biophys Acta 1450:45–52

    Article  PubMed  CAS  Google Scholar 

  45. Grobben B, Anciux K, Roymans D et al (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826–834

    Article  PubMed  CAS  Google Scholar 

  46. Zimmermann H (1996) Biochemistry localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618

    Article  PubMed  CAS  Google Scholar 

  47. Sneddon P, Westfall TD, Todorov LD et al (1999) Modulation of purinergic neurotransmission. Prog Brain Res 120:11–20

    Article  PubMed  CAS  Google Scholar 

  48. Machida T, Heerdt PM, Reid AC et al (2005) Ectonucleoside triphosphate diphosphohydrolaze1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis. J Pharmacol Exp Ther 313:570–577

    Article  PubMed  CAS  Google Scholar 

  49. Heine P, Braun N, Heilbronn A et al (1999) Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. Eur J Biochem 262:102–107

    Article  PubMed  CAS  Google Scholar 

  50. Oses JP, Cardoso CM, Germano RA et al (2004) Soluble NTPDase: an additional system of nucleotide hydrolysis in rat blood serum. Life Sci 74:3275–3284

    Article  PubMed  CAS  Google Scholar 

  51. Ganguly PK, Dhalla KS, Shao Q et al (1996) Differential changes in sympathetic activity in left and right ventricles in congestive heart failure after myocardial infarction. Am Heart J 133:340–345

    Article  Google Scholar 

Download references

Aknowledgments

We thank Dr. Maria Luiza Morais de Barreto-Chaves for providing Collagenase type II. We thank Dr. Arthur Germano Fett-Neto and his students for helping us with the gel pictures. This work was supported by grants and fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João José Freitas Sarkis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rücker, B., Almeida, M.E., Libermann, T.A. et al. Biochemical characterization of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C. 3.1.4.1) from rat heart left ventricle. Mol Cell Biochem 306, 247–254 (2007). https://doi.org/10.1007/s11010-007-9576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9576-5

Keywords

Navigation