Skip to main content
Log in

Nuclear condensation and free radical scavenging: a dual mechanism of bisbenzimidazoles to modulate radiation damage to DNA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The complexing of histones with DNA and the resulting condensation of chromatin protects mammalian cell, from radiation-induced strand breakage. In the present study, benzimidazoles DMA and TBZ showed marked radioprotection through drug-induced compaction of chromatin and direct quenching of free radicals generated by radiation. The mammalian cells were incubated with 100 μM concentration of DMA and TBZ and irradiated at 5 Gy; both the ligands showed nuclei condensation suggesting a probable mechanism to protect DNA from radiation damage. The bisubstituted analogs of Hoechst 33342 are found to be better free radical scavengers and protect DNA against radiation-induced damage at a lower concentration than the parent molecule. Both the ligands also quenched free radicals in isolated free radical system suggesting their dual mode of action against radiation-induced damage to DNA. Molecules binding to the chromatin alter gene expression, whereas in this study both the ligands have not shown any profound effect on the nucleosome assembly and gene expression in vitro and in vivo. Both ligands afford a 2-fold protection by altering DNA structure as well as through direct free radical quenching in bulk solution in comparison to the parent ligand, which acts only through quenching of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMA:

5-(4-Methylpiperazin-1-yl)-2-[2′-(3,4-dimethoxyphenyl)-5′-benzimidazolyl] benzimidazole

TBZ:

5-(4-Methylpiperazin-1-yl)-2-[2′{2′′-(4-hydroxy-3-methoxyphenyl)-5′′-benzimidazolyl}-5′-benzimidazolyl] benzimidazole

EPR spectroscopy:

Electron paramagnetic resonance spectroscopy

ROS:

Reactive oxygen species

LET:

Linear energy transfer

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

References

  1. Chiu S, Oleinick NL (1996) Radioprotection against the formation of DNA double-strand breaks in cellular DNA but not native cellular chromatin by the polyamine spermine. Radiat Res 148:188–192

    Article  Google Scholar 

  2. Douki T, Bretonniere Y, Cadet J (2000) Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res 153:29–35

    Article  PubMed  CAS  Google Scholar 

  3. Chiu S, Oleinick NL (1996) Radioprotection of cellular chromatin by the polyamines spermine and putrescine: preferential action against formation of DNA–protein crosslink. Radiat Res 149:543–549

    Article  Google Scholar 

  4. Warters RL, Newton GL, Olive PL et al (1999) Radioprotection of human cell nuclear DNA by polyamines: radio sensitivity of chromatin is influenced by tightly bound spermine. Radiat Res 151:354–362

    Article  PubMed  CAS  Google Scholar 

  5. Hall EJ (2000) Radiobiology for the radiobiologist, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  6. von, Sonntag C (1987) The chemistry of free radical mediated DNA damage. Physical and Chemical mechanism in Mol Rad Biol 287–310

  7. Devasagayam TPA, Subramanian M, Singh BB et al (1995) Protection of plasmid pBR322 DNA by flavonoids against single-strand breaks induced by singlet molecular oxygen. J Photochem Photobiol B: Biol 30:97–103

    Article  CAS  Google Scholar 

  8. Kim GJ, Fiskum GM, Morgan WF (2006) A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res 66:10377–10383

    Article  PubMed  CAS  Google Scholar 

  9. Wolffe AP (1994) Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem Sci 19:240–244

    Article  PubMed  CAS  Google Scholar 

  10. Pruss DJ, Hayes J, Wolffe AP (1995) Nucleosomal anatomy—where are the histones? Bioessays 17:161–170

    Article  PubMed  CAS  Google Scholar 

  11. Beato M, Eisfeld K (1997) Transcription factor access to chromatin. Nucleic Acids Res 25:3559–3563

    Article  PubMed  CAS  Google Scholar 

  12. Pennings S, Meersseman G, Bradbury FM (1992) Effect of glycerol on the separation of nucleosomes and bent DNA in low ionic strength polyacrylamide gel electrophoresis. Nucleic Acids Res 20:6667–6672

    Article  PubMed  CAS  Google Scholar 

  13. Gruss C, Wu J, Koller T, Sogo JM (1993) Disruption of the nucleosomes at the replication fork. EMBO J 12:4533–4545

    PubMed  CAS  Google Scholar 

  14. Adams C, Workman J (1993) Nucleosome displacement in transcription. Cell 72:305–308

    Article  PubMed  CAS  Google Scholar 

  15. Pazin MJ, Bhargava EP, Geiduschek EP et al (1997) Nucleosome mobility and the maintenance of nucleosome positioning. Science 276:809–812

    Article  PubMed  CAS  Google Scholar 

  16. Cairns MJ, Murray V (1996) Influence of chromatin structure on bleomycin–DNA interactions at base pair resolution in the human β-Globin gene cluster. Biochemistry 35:8753–8760

    Article  PubMed  CAS  Google Scholar 

  17. Enright H, Miller WJ, Hays R et al (1996) Preferential targeting of oxidative base damage to internucleosomal DNA. Carcinogenesis 17:1175–1177

    Article  PubMed  CAS  Google Scholar 

  18. Zimmer C, Wahnert U (1986) Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog Biophys Mol Biol 47:31–112

    Article  PubMed  CAS  Google Scholar 

  19. Geierstanger BH, Wemmer DE (1995) Complexes of the minor groove of DNA. Annu Rev Biophys Biomol Struct 24:463–493

    Article  PubMed  CAS  Google Scholar 

  20. Eriksson S, Kim SK, Kubista M et al (1993) Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change. Biochemistry 32:2987–2998

    Article  PubMed  CAS  Google Scholar 

  21. Kas E, Poljak L, Adachi Y et al (1993) A model for chromatin opening: stimulation of topoisomerase II and restriction enzyme cleavage of chromatin by distamycin. EMBO J 12:115–126

    PubMed  CAS  Google Scholar 

  22. Sen D, Crothers DM (1986) Influence of DNA–binding drugs on chromatin condensation. Biochemistry 25:1503–1509

    Article  PubMed  CAS  Google Scholar 

  23. Radic MZ, Lundgren K, Hamkalo BA (1987) Hoechst 33258, distamycin A, and high mobility group protein I (HMG-I) compete for binding to mouse satellite DNA. Cell 50:1101–1108

    Article  PubMed  CAS  Google Scholar 

  24. Low CM, Drew HR, Waring MJ (1986) Echinomycin and distamycin induce rotation of nucleosome core DNA. Nucleic Acids Res 14:6785–6801

    Article  PubMed  CAS  Google Scholar 

  25. Perez JJ, Portugal J (1980) Molecular modelling study of changes induced by netropsin binding to nucleosome core particles. Nucleic Acids Res 18:3731–3737

    Article  Google Scholar 

  26. Denison L, Haigh A, D’Cunha GM et al (1992) DNA ligands as radioprotectors: molecular studies with Hoechst 33342 and Hoechst 33258. Int J Radiat Biol 61:69–81

    Article  PubMed  CAS  Google Scholar 

  27. Lyubimova NV, Coultas PG, Yuen K et al (2001) In vivo radioprotection of mouse brain endothelial cells by Hoechst 33342. Br J Radiol 74:77–82

    PubMed  CAS  Google Scholar 

  28. Singh SP, Jayanth VR, Chandna S et al (1998) Radioprotective effects of DNA ligands Hoechst 33342 and 33258 in whole body irradiated mice. Ind J Exp Biol 36:375–384

    CAS  Google Scholar 

  29. Loontiens FG, Regenfuss P, Zechel A et al (1990) Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry 29:9029–9039

    Article  PubMed  CAS  Google Scholar 

  30. Martin RF, Anderson RF (1998) Pulse radiolysis studies indicate that electron transfer is involved in radioprotection by Hoechst 33342 and methylprolamine. Int J Radiat Oncol Biol Phys 42:827–831

    Article  PubMed  CAS  Google Scholar 

  31. Adhikary A, Bothe E, Jain V et al (2000) Pulse radiolysis of the DNA-binding bisbenzimidazole derivatives Hoechst 33258 and 33342 in aqueous solutions. Int J Radiat Biol 76:1157–1166

    Article  PubMed  CAS  Google Scholar 

  32. Tawar U, Jain AK, Dwarakanath BS et al (2003) Influence of phenyl ring disubstitution on bisbenzimidazole and terbenzimidazole cytotoxicity: synthesis and biological evaluation as radioprotectors. J Med Chem 46:3785–3792

    Article  PubMed  CAS  Google Scholar 

  33. Tawar U, Jain AK, Chandra R et al (2003) Minor groove binding DNA ligands with expanded A/T sequence length recognition, selective binding to bent DNA regions and enhanced fluorescent properties. Biochemistry 42:13339–13346

    Article  PubMed  CAS  Google Scholar 

  34. Ha HC, Sirisoma NS, Kuppusamy P et al (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145

    Article  PubMed  CAS  Google Scholar 

  35. Pulley DE, Ellison MJ (1982) Purification and properties of type I topoisomerase from chicken erythrocytes: mechanism of eukaryotic topoisomerase action. Biochemistry 21:1155–1161

    Article  Google Scholar 

  36. Drew HR, Travers AA (1985) DNA bending and its relation to nucleosome positioning. J Mol Biol 186:773–790

    Article  PubMed  CAS  Google Scholar 

  37. Shrader T, Crothers D (1990) Effects of DNA sequence and histone–histone interactions on nucleosome placement. J Mol Biol 216:69–84

    Article  PubMed  CAS  Google Scholar 

  38. Dhawan A, Bajpayee M, Pandey AK et al Protocol for the single cell gel electrophoresis/comet assay for rapid genotoxicity assessment. ITRC: the SCGE/comet assay protocol

  39. Chandna S (2004) Single-cell gel electrophoresis assay monitors precise kinetics of DNA fragmentation induced during programmed cell death. Cytometry 61A:127–133

    Article  CAS  Google Scholar 

  40. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutation Res 113:173–215

    PubMed  CAS  Google Scholar 

  41. Ames BN, Mccann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutation Res 31:347–364

    PubMed  CAS  Google Scholar 

  42. Dwarakanath BS, Khaitan D, Ravindranath T (2004) 2-deoxy-d-glucose enhances the cytotoxicity of topoisomerase inhibitors in human tumor cell lines. Cancer Biol Ther 3:864–870

    Article  PubMed  CAS  Google Scholar 

  43. Duand RE, Olive PL (1982) Cytotoxicity, mutagenicity and DNA damage by Hoechst 33342. J Histochem Cytochem 30:111–116

    Google Scholar 

  44. Brown PM, Fox KR (1996) Minor groove binding ligands alter the rotational positioning of DNA fragments on nucleosome core particles. J Mol Biol 262:671–685

    Article  PubMed  CAS  Google Scholar 

  45. Fitzgerald DJ, Anderson JN (1999) Selective nucleosome disruption by drugs that bind in the minor groove of DNA. J Biol Chem 274:27128–27138

    Article  PubMed  CAS  Google Scholar 

  46. Portugal J, Waring MJ (1987) Analysis of the effects of antibiotics on the structure of nucleosome core particles determined by DNase I cleavage. Biochimie 69:825–840

    Article  PubMed  CAS  Google Scholar 

  47. Valota A, Ballarini F, Friedland W et al (2003) Modelling study on the protective role of OH radical scavengers and DNA higher-order structures in induction of single- and double-strand break by gamma-radiation. Int J Radiat Biol 79:643–653

    Article  PubMed  CAS  Google Scholar 

  48. Nygren J, Ljungman M, Ahnstrom G (1995) Chromatin structure and radiation-induced DNA strand breaks in human cells: soluble scavengers and DNA-bound proteins offer a better protection against single-than double-strand breaks. Int J Radiat Biol 68:11–18

    Article  PubMed  CAS  Google Scholar 

  49. Swenberg CE, Speicher JM (1995) Neutron and gamma-radiation sensitivity of plasmid DNA of varying superhelical density. Radiat Res 144:301–309

    Article  PubMed  CAS  Google Scholar 

  50. Cheong N, Perrault AR, Illiakis G (1998) In vitro rejoining of DNA double strand breaks: a comparison of genomic-DNA with plasmid-DNA-based assays. Int J Radiat Biol 73:481–491

    Article  PubMed  CAS  Google Scholar 

  51. Lapchak PA, Chapman DF, Zivin JA (2001) Pharmacological effects of the spin trap agents N-t-Butyl-Phenylnitrone (PBN) and 2,2,6,6,-Tetramethylpiperidine-N-Oxyl (TEMPO) in a rabbit thromboembolic stroke model: combination studies with the thrombolytic tissue plasminogen activator. Stroke 32:147–153

    PubMed  CAS  Google Scholar 

  52. Yokoya A, Watanbe R, Hara T (1999) Single- and double-strand breaks in solid pBR322 DNA induced by ultrasoft X-rays at photon energies of 388, 435 and 573 eV. J Radiat Res 40:145–158

    Article  PubMed  CAS  Google Scholar 

  53. Britigan BE, Coffman TJ, Buettner GR (1990) Spin trapping evidence for the lack of significant hydroxyl radical production during the respiration burst of human phagocytes using a spin adduct resistant to super oxide-mediated destruction. J Biol Chem 265:2650–2656

    PubMed  CAS  Google Scholar 

  54. Samuni A, Goldstein S, Russo A et al (2002) Kinetics and mechanism of hydroxyl radical and OH-Adduct radical reactions with nitroxides and with their hydroxylamines. J Am Chem Soc 124:8719–8724

    Article  PubMed  CAS  Google Scholar 

  55. Mohan H, Adhikary A, Jain V et al (2000) Quenching of nucleotide derived radicals by bisbenzimidazole derivative Hoechst-33258 in aqueous solution. Proc Indian Acad Sci (Chem Sci) 112:487–496

    Article  CAS  Google Scholar 

  56. Adhikary A, Bothe E, Jain V et al (1997) Inhibition of radiation-induced DNA strand breaks by Hoechst 33258: OH-radical scavenging and DNA radical quenching. Radioprotection 32:C1-89–C1-90

    Google Scholar 

  57. Adhikary A, Bothe E, von Sonntag C et al (1997) DNA radioprotection by bisbenzimidazole derivative Hoechst 33258: model studies on the nucleotide level. Radiat Res 148:493–494

    CAS  Google Scholar 

  58. Low CM, Drew HR, Waring MJ (1986) Echinomycin and distamycin induce rotation of nucleosome core DNA. Nucleic Acids Res 14:785–680

    Google Scholar 

  59. Leslie KD, Fox KR (2002) Interaction of Hoechst 33258 and echinomycin with nucleosomal DNA fragments containing isolated ligand binding sites. Biochemistry 41:3484–3497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Urmila Tawar is indebted to Council of Scientific and Industrial Research, New Delhi for financial assistance as Senior Research Fellowship. Authors would like to thank Dr. Dwarakanath at Institute of nuclear medicine and allied sciences for providing radiation source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Tandon.

Electronic supplementary material

Below is the link to the electronic supplementary material

11010_2007_9546_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawar, U., Bansal, S., Shrimal, S. et al. Nuclear condensation and free radical scavenging: a dual mechanism of bisbenzimidazoles to modulate radiation damage to DNA. Mol Cell Biochem 305, 221–233 (2007). https://doi.org/10.1007/s11010-007-9546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9546-y

Keywords

Navigation