Skip to main content
Log in

Cloning, gene expression and characterization of a novel bacterial NAD-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Neisseria meningitidis strain Z2491

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alignment of the amino acid sequence of some archaeal, bacterial and eukaryotic non-phosphorylating glyceraldehydes-3-phosphate dehydrogenases (GAPNs) and aldehyde dehydrogenases (ALDHs) with the sequence of a putative GAPN present in the genome of the Gram-negative bacterium Neisseria meningitidis strain Z2491 demonstrated the conservation of residues involved in the catalytic activity. The predicted coding sequence of the N. meningitidis gapN gene was cloned in Escherichia coli XL1-blue under the expression of an inducible promoter. The IPTG-induced GAPN was purified ca. 48-fold from E. coli cells using a procedure that sequentially employed conventional ammonium sulfate fractionation as well as anion-exchange and affinity chromatography. The purified recombinant enzyme was thoroughly characterized. The protein is a homotetramer with a 50-kDa subunit, exhibiting absolute specificity for NAD and a broad spectrum of aldehyde substrates. Isoelectric focusing analysis with the purified fraction showed the presence of an acidic polypeptide with an isoelectric point of 6.3. The optimum pH of the purified enzyme was between 9 and 10. Studies on the effect of increasing temperatures on the enzyme activity revealed an optimal value ca. 64 °C. Molecular phylogenetic data suggest that N. meningitidis GAPN has a closer relationship with archaeal GAPNs and glyceraldehyde dehydrogenases than with the typical NADP-specific GAPNs from Gram-positive bacteria and photosynthetic eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caugant DA (1998) Population genetics and molecular epidemiology of Neisseria meningitidis. APMIS 106:505–525

    Article  PubMed  CAS  Google Scholar 

  2. Exley RM, Shaw J, Mowe E et al (2005) Available carbon source influences the resistance of Neisseria meningitidis against complement. J Exp Med 201:637–1645

    Article  CAS  Google Scholar 

  3. Forthergill-Gilmore LA, Michels PAM (1993) Evolution of glycolysis. Prog Biophys Biol 95:105–135

    Article  Google Scholar 

  4. Brinkmann H, Cerff R, Salomon M et al (1989) Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinash. Plant Mol Biol 13:81–94

    Article  PubMed  CAS  Google Scholar 

  5. Cerff R (1982) Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase from higher plants. In: Edekman M, Hallik RB, Chua MH (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam, The Netherlands, pp 683–694

    Google Scholar 

  6. Valverde F, Losada M, Serrano A (1997) Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. Strain PCC 6803. J Bacteriol 179:4513–4522

    PubMed  CAS  Google Scholar 

  7. Cerff R (1995) Origin and evolution of phosphorylating and non-phosphorylating glyceraldehyde-3-phosphate dehydrogenases. In: Mathis P (ed) Photosynthesis from light to biosphere, vol 1. Kluwer Academic Publishers, Dordrecht, pp 933–938

    Google Scholar 

  8. Habenicht A, Hellman U, Cerff R (1994) Non-phosphorylating GAPDH of higher plants is a member of the aldehyde dehydrogenase superfamily with no sequence homology to phosphorylating GAPDH. J Mol Biol 237:165–171

    Article  PubMed  CAS  Google Scholar 

  9. Mateos MI, Serrano A (1992) Ocurrence of phosphorylating and non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase in photosynthetic organisms. Plant Sci 84:163–170

    Article  CAS  Google Scholar 

  10. Serrano A, Mateos MI, Losada M (1993) ATP-driven transhydrogenation and ionization of water in a reconstituted glyceraldehyde-3-phosphate dehydrogenase (phosphorylating and non-phosphorylating) model system. Biochem Biophys Res Commun 193:1348–1356

    Article  Google Scholar 

  11. Iglesias A, Serrano A, Guerrero MG et al (1987) Purification and properties of NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the green alga Chlamydomonas reinhardtii. Biochem Biophys Acta 925:1–10

    CAS  Google Scholar 

  12. Boyd DA, Cvitkovitch DG, Hamilton IR (1995) Sequence, expression, and function of the gene for the non-phosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J Bacteriol 177:2622–2627

    PubMed  CAS  Google Scholar 

  13. Iddar A, Valverde F, Serrano A et al (2002) Expression, purification and characterization of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expr Purif 25:519–526

    Article  PubMed  CAS  Google Scholar 

  14. Iddar A, Valverde F, Serrano A et al (2003) Purification of Recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol Cell Biochem 247:195–203

    Article  PubMed  CAS  Google Scholar 

  15. Iddar A, Valverde F, Assobhei O et al (2005) Widespread occurrence of non- phosphorylating glyceraldehyde-3-phosphate dehydrogenase among gram-positive bacteria. Int Microbiol 8:251–258

    PubMed  CAS  Google Scholar 

  16. Van der Oost J, Schut G, Kengen SWM et al (1998) The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation. Biol Chem 273: 28149–28154

    Article  Google Scholar 

  17. Brunner NA, Brinkmann H, Siebers B et al (1998) NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. J Biol Chem 273:6149–6156

    Article  PubMed  CAS  Google Scholar 

  18. Ahmed H, Ettema TJ, Tjaden B et al (2005) The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390:529–540

    Article  PubMed  CAS  Google Scholar 

  19. Lorentzen E, Hensel R, Knura T et al (2004) Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehydes-3-phosphate dehydrogenase from Thermoproteus tenax. J Mol Biol 341:815–828

    Article  PubMed  CAS  Google Scholar 

  20. Parkhill J, Achtman M, James KD et al (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502–506

    Article  PubMed  CAS  Google Scholar 

  21. Kellogg DS, Peacock WL, Deacon WE et al (1963) Neisseria gonorrhoeae. Virulence genetically linked to clonal variation. J Bacteriol 85:1274–1279

    PubMed  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  23. Valverde F, Losada M, Serrano A (1999) A Engineering a central metabolic pathway: glycolysis with no net phosphorylating in an Escherichia coli gap complemented with a plant gapN gene. FEBS Lett 449:153–158

    Article  PubMed  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:4668–4673

    Article  Google Scholar 

  26. Hedrick JL, Smith AJ (1968) Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys 162:155–164

    Article  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTALX Windows interface: flexible strategies for multiple sequence aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  28. Strimmer K, von Haeseler A (1996) Quarter puzzling: a quarter maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  29. Marchal S, Branlant G (1999) Evidence for the chemical activation of essential cys-302 upon cofactor binding to non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Biochemistry 38:12950–12958

    Article  PubMed  CAS  Google Scholar 

  30. Marchal S, Cobessi D, Rahuel-Clermont S et al (2001) Chemical mechanism and substrate binding sites of NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. Chem Biol Interact 30:15–28

    Article  Google Scholar 

  31. Marchal S, Rahuel-Clermont S, Branlant G (2000) Role of glutamate- 268 in catalytic mechanism of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Biochemistry 39:3327–3335

    Article  PubMed  CAS  Google Scholar 

  32. Liu ZJ, Sun YJ, Rose J et al (1997) The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol 4:317–326

    Article  PubMed  CAS  Google Scholar 

  33. Marchal S, Branlant G (2002) Characterization of the amino acids involved in substrate specificity of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. J Biol Chem 277:39235–39242

    Article  PubMed  CAS  Google Scholar 

  34. Harris JI, Waters M (1976) Glyceraldehyde-3-phosphate dehydrogenase. In: Boyer PD (ed) The enzymes, vol 13. Academic Press, New York, pp 1–49

    Google Scholar 

  35. Habenicht A (1997) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase: biochemistry, structure, occurrence and evolution. Biol Chem 378:1413–1419

    PubMed  CAS  Google Scholar 

  36. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  37. Jung HJ, Lee SB (2006) Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem J 397:131–138

    Article  PubMed  CAS  Google Scholar 

  38. Reher M, Schönheit P (2006) Glyceraldehyde dehydrogenases from the thermophilic euryarcheota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner–Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. FEBS Lett 280:1198–1204

    Article  CAS  Google Scholar 

  39. Hafid N, Valverde F, Villalobos E et al (1998) Glyceraldehyde-3-phosphate dehydrogenase from Tetrahymena pyriformis: enzyme purification and characterization of a gapC gene with primitive eukaryotic features. Comp Biochem Physiol 119:493–503

    CAS  Google Scholar 

  40. Brunner NA, Lang DA, Wilmanns M et al (2000) Crystallization and preliminary X-ray diffraction analysis of the NAD-dependent non-phosphorylating GAPDH of the hyperthermophilic archaeon Thermoproteus tenax. Acta Cryst 56:89–91

    CAS  Google Scholar 

  41. Pohl E, Brunner N, Wilmanns M, Hensel R (2002) The crystal structure of the allosteric non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeum Thermoproteus tenax. J Biol Chem 277:19938–19945

    Article  PubMed  CAS  Google Scholar 

  42. Brown AT, Wittenberger CL (1971) Mechanism for regulating the distribution of glucose carbon between the Embden–Meyerhof and hexosemonophosphate pathways in Streptococcus faecalis. J Bacteriol 106:456–467

    PubMed  CAS  Google Scholar 

  43. Habenicht A, Quesada A, Cerff R (1997) Sequence of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Nicotiana plumbaginifolia and phylogenetic origin of the gene family. Gene 198:237–243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. M. Losada for encouragement and help. This work is part of several collaborative Research Projects between the CNR (Morocco) and CSIC (Spain). It was supported by AECI (Spain) and collaborative grants of the Andalusian Government—Ministère d’Education et de la Recherche Scientifique of Morocco (Junta de Andalucía, Proyectos de Cooperación al Desarrollo en el Ámbito Universitario de la Agencia Andaluza de Cooperación Internacional A52/02, and A54/04), group PAI CVI-261 and grants from CNRST (Morocco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Soukri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fourrat, L., Iddar, A., Valverde, F. et al. Cloning, gene expression and characterization of a novel bacterial NAD-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Neisseria meningitidis strain Z2491. Mol Cell Biochem 305, 209–219 (2007). https://doi.org/10.1007/s11010-007-9545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9545-z

Keywords

Navigation