Skip to main content
Log in

The VEGFR2 and PKA pathways converge at MEK/ERK1/2 to promote survival in serum deprived neuronal cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Identifying prosurvival mechanisms in stressed neuronal cells would provide protective strategies to hinder neurodegeneration. Recent evidence shows that vascular endothelial growth factor (VEGF), a well-established mitogen in endothelial cells, can mediate neuroprotection against damaging insults through the activation of its cognate receptor VEGFR2. In addition, growth factor receptor signaling pathways have been shown to crosstalk with cAMP-dependent Protein Kinase A (PKA) to protect neuronal cells from harmful stimuli. Whether a relationship exists between VEGFR2 and PKA in mediating neuroprotection under stressful conditions is unknown. Using SK-N-SH neuronal cells as a model system, we show that serum deprivation induces an upregulation in VEGF and VEGFR2 that concomitantly serves as a prosurvival signaling pathway. Inhibitor studies revealed that PKA functioned concurrently with VEGFR2 pathway to signal the activation of the extracellular signal-regulated protein kinases (ERK1/2) as protection against caspase-3/7 activation and a subsequent cell death. The loss in cell viability induced by VEGFR2 and PKA inhibition was prevented by caspase inhibition or overexpression of ERK1. Overexpression of the antiapoptotic protein Bcl-xL also promoted survival when VEGFR2 function was blocked. However, the protection elicited by all three treatments were prevented by the inclusion of a selective inhibitor of mitogen-activated protein kinase kinase (MEK), the upstream kinase that activates ERK1/2. Taken together, these findings suggested that PKA and VEGFR2 converge at the MEK/ERK1/2 pathway to protect serum starved neuronal cells from a caspase-dependent cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zachary I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207–221

    Article  PubMed  CAS  Google Scholar 

  2. Gora-Kupilas K, Josko J (2005) The neuroprotective function of vascular endothelial growth factor (VEGF). Folia Neuropathol 43:31–39

    PubMed  CAS  Google Scholar 

  3. Sondell M, Sundler F, Kanje M (2000) Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 12:4243–4254

    Article  PubMed  CAS  Google Scholar 

  4. Silverman WF, Krum JM, Mani N et al (1999) Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 90:1529–1541

    Article  PubMed  CAS  Google Scholar 

  5. Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J Mol Neurosci 14:197–203

    Article  PubMed  CAS  Google Scholar 

  6. Jin KL, Mao XO, Nagayama T et al (2000) Induction of vascular endothelial growth factor receptors and phosphatidylinositol 3-Kinase/Akt signaling by global cerebral ischemia in the rat. Neuroscience 100:713–717

    Article  PubMed  CAS  Google Scholar 

  7. Ogunshola OO, Antic A, Donoghue MJ et al (2002) Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277:11410–11415

    Article  PubMed  CAS  Google Scholar 

  8. Matsuzaki H, Tamatani M, Yamaguchi A et al (2001) Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades FASEB J 15:1218–1220

    PubMed  CAS  Google Scholar 

  9. Kilic I, Kilic E, Ja¨rve A et al (2006) Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK1/2 and Akt Pathways. J Neurosci 26:12439–12446

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Mao XO, Xie L et al (2007) Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci 27:304–307

    Article  PubMed  Google Scholar 

  11. Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  12. Neufeld G, Cohen T, Shraga N et al (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12:13–19

    Article  PubMed  CAS  Google Scholar 

  13. Tamagnone L, Comoglio PM (2000) Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol 10:377–383

    Article  PubMed  CAS  Google Scholar 

  14. Kilic E, Kilic U, Wang Y et al (2006) The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J 20:1185–1187

    Article  PubMed  CAS  Google Scholar 

  15. Wick A, Wick W, Waltenberger J et al (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 15:6401–6407

    Google Scholar 

  16. Jin K, Mao XO, Batteur SP et al (2001) Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience 108:351–358

    Article  PubMed  CAS  Google Scholar 

  17. Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    Article  PubMed  CAS  Google Scholar 

  18. Dumaz N, Marais R (2005) Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. FEBS J 272:3491–3504

    Article  PubMed  CAS  Google Scholar 

  19. D’Angelo G, Lee H, Weiner RI (1997) cAMP-dependent protein kinase inhibits the mitogenic action of vascular endothelial growth factor and fibroblast growth factor in capillary endothelial cells by blocking Raf activation. J Cell Biochem 67:353–366

    Article  PubMed  CAS  Google Scholar 

  20. Yao H, York RD, Misra-Press A et al (1998) The cyclic adenosine monophosphate–dependent protein kinase (PKA) is required for the sustained activation of mitogen activated kinases and gene expression by nerve growth factor. J Biol Chem 273:8240–8247

    Article  PubMed  CAS  Google Scholar 

  21. Park K, Luo JM, Hisheh S et al (2004) Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor-cAMP-induced survival and axonal regeneration of adult retinal ganglion cells. J Neurosci 24:10806–10815

    Article  PubMed  CAS  Google Scholar 

  22. Troadec JD, Marien M, Mourlevat S et al (2002) Activation of the mitogen-activated protein kinase (ERK(1/2)) signaling pathway by cyclic AMP potentiates the neuroprotective effect of the neurotransmitter noradrenaline on dopaminergic neurons. Mol Pharmacol 62:1043–1052

    Article  PubMed  CAS  Google Scholar 

  23. Filippa N, Sable C L, Filloux C et al (1999) Mechanism of Protein Kinase B Activation by Cyclic AMP-Dependent Protein. Kinase Mol Cell Biol 19:4989–5000

    CAS  Google Scholar 

  24. Wang G, Qi C, Fan GH et al (2005) PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett 579:4005–4011

    Article  PubMed  CAS  Google Scholar 

  25. Rockwell P, Martinez J, Papa L et al (2004) Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 16:343–353

    Article  PubMed  CAS  Google Scholar 

  26. Horbinski C, Chu CT (2005) Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 38:2–11

    Article  PubMed  CAS  Google Scholar 

  27. Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271:2050–2055

    Article  PubMed  CAS  Google Scholar 

  28. Vossler MR, Yao H, York RD et al (1997) cAMP activates MAP Kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89:73–82

    Article  PubMed  CAS  Google Scholar 

  29. Chong H, Vikis HG, Guan KL (2003) Mechanisms of regulating the Raf kinase family. Cell Signal 15:463–469

    Article  PubMed  CAS  Google Scholar 

  30. Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling — in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  31. Bouschet T, Perez V, Fernandez C et al (2003) Stimulation of the ERK pathway by GTP-loaded Rap1 requires the concomitant activation of Ras, Protein Kinase C, and Protein Kinase A in neuronal cells. J Biol Chem 278:4778–4785

    Article  PubMed  CAS  Google Scholar 

  32. Iida N, Namikawa K, Kiyama H et al (2001) Requirement of Ras for the activation of Mitogen-Activated Protein Kinase by calcium influx, cAMP, and neurotrophin in hippocampal neurons. J Neurosci 21:6459–6466

    PubMed  CAS  Google Scholar 

  33. Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775–5781

    PubMed  CAS  Google Scholar 

  34. Putz T, Culig Z, Eder IE et al (1999) Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines. Cancer Res 59:227–233

    PubMed  CAS  Google Scholar 

  35. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  36. Eliseev RA, VanWinkle B, Rosier RN et al (2004) Diazoxide-mediated preconditioning against apoptosis involves activation of cAMP-response element-binding Protein (CREB) and NFκB. J Biol Chem 279:46748–46754

    Article  PubMed  CAS  Google Scholar 

  37. Boucher MJ, Morisset J, Vachon PH et al (2000) MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-xL, and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 79:355–369

    Article  PubMed  CAS  Google Scholar 

  38. Mori M, Uchida M, Watanabe T et al (2003) Activation of extracellular signal-regulated kinases ERK1 and ERK2 induces Bcl-xL up-regulation via inhibition of caspase activities in erythropoietin. J Cell Physiol 195:290–297

    Article  PubMed  CAS  Google Scholar 

  39. Impey S, Obrietan K, Wong ST et al (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21:869–883

    Article  PubMed  CAS  Google Scholar 

  40. Lee HJ, Bach JH, Chae HS et al (2004) Mitogen-activated protein kinase/extracellular signal-regulated kinase attenuates 3-hydroxykynurenine-induced neuronal cell death. J Neurochem 88:647–656

    Article  PubMed  CAS  Google Scholar 

  41. Jin K, Mao XO, Zhu Y et al (2002) MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J Neurochem 80:119–125

    Article  PubMed  CAS  Google Scholar 

  42. Baek JH, Jang JE, Kang CM et al (2000) Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 19:4621–4631

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Institutes of Health Grant (NIGMS SCORE to P.R.) and Grant Number RR03037 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Rockwell.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM1 (PDF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, E., Papa, L., Hao, T. et al. The VEGFR2 and PKA pathways converge at MEK/ERK1/2 to promote survival in serum deprived neuronal cells. Mol Cell Biochem 305, 179–190 (2007). https://doi.org/10.1007/s11010-007-9542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9542-2

Keywords

Navigation