Skip to main content
Log in

Altered expression of gap junction connexin proteins may partly underlie heart rhythm disturbances in the streptozotocin-induced diabetic rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies in isolated perfused heart and in atrial preparations have demonstrated significant reductions in beating rate in STZ-induced diabetic rats, which suggests that sinus arrhythmias in diabetes mellitus may be partly caused by intrinsic alteration of sino-atrial node (SAN) function. The effects of diabetes on electrical activity and expression levels of mRNA for gap junction proteins in the SAN have been investigated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg) administered to young male Wistar rats (200–250 g). Experiments were performed 8–10 weeks after treatment. Conduction time and pacemaker cycle length were measured in sino-atrial node preparations with extracellular electrodes. Expression levels of mRNA for Gja5 (C×40), Gja1 (C×43) and Gja7 (C×45) were measured in SAN and compared with right atrium and right ventricle with real-time quantitative reverse transcription-polymerase chain reaction. Diabetes was confirmed by a significant elevation of blood glucose (356 ± 21 mg/dl) compared to age-matched controls (66 ± 2 mg/dl). Pacemaker cycle length was significantly prolonged in diabetic heart (415 ± 43 ms, n = 6) compared to controls (255 ± 7 ms, n = 6). Sino-atrial conduction time was also significantly prolonged in diabetic hearts (12 ± 2 ms) compared to controls (7 ± 1 ms). Expression levels of mRNA for Gja5 (C×40) and Gja1 (C×43) were moderately increased and for Gja7 (C×45) was significantly increased in SAN from diabetic heart compared to controls. Expression levels for gap junction connexin proteins were not significantly altered in right atrium or right ventricle from diabetic heart compared to controls. Structural remodelling of gap junction connexin proteins may partly underlie electrophysiological defects in STZ-induced diabetic rat SAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Veglio M, Chinaglia A, Cavallo PP (2000) The clinical utility of QT interval assessment in diabetes. Diabetes Nutr Metab 13:356–365

    PubMed  CAS  Google Scholar 

  2. Park HW, Cho JG, Yum JH, Hong YJ, Lim JH, Kim HG, Kim JH, Weon-Kim, Ahn YK, Jeong MH, Park JC, Kang JC (2004) Clinical characteristics of hypervagotonic sinus node dysfunction. Korean J Intern Med 19:155–159

    Article  PubMed  Google Scholar 

  3. Podlaha R, Falk A (1992) The prevalence of diabetes mellitus and other risk factors of atherosclerosis in bradycardia requiring pacemaker treatment. Horm Metab Res Suppl 26:84–87

    PubMed  CAS  Google Scholar 

  4. Linnemann B, Janka HU (2003) Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen diabetes study. Exp Clin Endocrinol Diabetes 111:215–222

    Article  PubMed  CAS  Google Scholar 

  5. Howarth FC, Jacobson M, Shafiullah M, Adeghate E (2006) Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat. Clin Exp Pharmacol Physiol 33:327–331

    Article  PubMed  CAS  Google Scholar 

  6. Howarth FC, Jacobson M, Shafiullah M, Adeghate E (2005) Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol 90:827–835

    Article  PubMed  CAS  Google Scholar 

  7. Hicks KK, Seifen E, Stimers JR, Kennedy RH (1998) Effects of streptozotocin-induced diabetes on heart rate, blood pressure and cardiac autonomic nervous control. J Auton Nerv Syst 69:21–30

    Article  PubMed  CAS  Google Scholar 

  8. Howarth FC, Qureshi MA (2006) Effects of carbenoxolone on heart rhythm, contractility and intracellular calcium in streptozotocin-induced diabetic rat. Mol Cell Biochem 289:21–29

    Article  PubMed  CAS  Google Scholar 

  9. Kofo-Abayomi A, Lucas PD (1988) A comparison between atria from control and streptozotocin-diabetic rats: the effects of dietary myoinositol. Br J Pharmacol 93:3–8

    PubMed  CAS  Google Scholar 

  10. Betsuyaku T, Nnebe NS, Sundset R, Patibandla S, Krueger CM, Yamada KA (2006) Overexpression of cardiac connexin45 increases susceptibility to ventricular tachyarrhythmias in vivo. Am J Physiol 290:H163-H171

    CAS  Google Scholar 

  11. Yamada KA, Rogers JG, Sundset R, Steinberg TH, Saffitz JE (2003) Up-regulation of connexin45 in heart failure. J Cardiovasc Electrophysiol 14:1205–1212

    Article  PubMed  Google Scholar 

  12. Yamamoto M, Honjo H, Niwa R, Kodama I (1998) Low-frequency extracellular potentials recorded from the sinoatrial node. Cardiovasc Res 39:360–372

    Article  PubMed  CAS  Google Scholar 

  13. Lei M, Jones SA, Liu J, Lancaster MK, Fung SS, Dobrzynski H, Camelliti P, Maier SK, Noble D, Boyett MR (2004) Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol 559:835–848

    PubMed  CAS  Google Scholar 

  14. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234

    Article  PubMed  CAS  Google Scholar 

  15. Loganathan R, Bilgen M, Al Hafez B, Smirnova IV (2006) Characterization of alterations in diabetic myocardial tissue using high resolution MRI. Int J Cardiovasc Imaging 22:81–90

    Article  PubMed  Google Scholar 

  16. Ruzicska E, Foldes G, Lako-Futo Z, Sarman B, Wellmann J, Szenasi G, Tulassay Z, Ruskoaho H, Toth M, Somogyi A (2004) Cardiac gene expression of natriuretic substances is altered in streptozotocin-induced diabetes during angiotensin II-induced pressure overload. J Hypertens 22:1191–1200

    Article  PubMed  CAS  Google Scholar 

  17. Grimm D, Jabusch HC, Kossmehl P, Huber M, Fredersdorf S, Griese DP, Kramer BK, Kromer EP (2002) Experimental diabetes and left ventricular hypertrophy: effects of beta-receptor blockade. Cardiovasc Pathol 11:229–237

    Article  PubMed  CAS  Google Scholar 

  18. Stadler K, Jenei V, Somogyi A, Jakus J (2004) Aminoguanidine prevents peroxynitrite production and cardiac hypertrophy in streptozotocin-induced diabetic rats. Orv Hetil 145:2491–2496

    PubMed  Google Scholar 

  19. Hajinazarian M, Cosio FG, Nahman NSJ, Mahan JD (1994) Angiotensin-converting enzyme inhibition partially prevents diabetic organomegaly. Am J Kidney Dis 23:105–117

    PubMed  CAS  Google Scholar 

  20. Borges GR, de Oliveira M, Salgado HC, Fazan R Jr (2006) Myocardial performance in conscious streptozotocin diabetic rats. Cardiovasc Diabetol 5:26

    Article  PubMed  CAS  Google Scholar 

  21. Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol 281:H1137–H1147

    CAS  Google Scholar 

  22. Tamada A, Hattori Y, Houzen H, Yamada Y, Sakuma I, Kitabatake A, Kanoo M (1998) Effects of beta-adrenoceptor stimulation on contractility, [Ca2+](i), and Ca2+ current in diabetic rat cardiomyocytes. Am J Physiol 43:H1849–H1857

    Google Scholar 

  23. Kreuzberg MM, Schrickel JW, Ghanem A, Kim JS, Degen J, Janssen-Bienhold U, Lewalter T, Tiemann K, Willecke K (2006) Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci USA 103:5959–5964

    Article  PubMed  CAS  Google Scholar 

  24. Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502

    Article  PubMed  CAS  Google Scholar 

  25. John S, Cesario D, Weiss JN (2003) Gap junctional hemichannels in the heart. Acta Physiol Scand 179:23–31

    Article  PubMed  CAS  Google Scholar 

  26. Nicholson BJ, Weber PA, Cao F, Chang H, Lampe P, Goldberg G (2000) The molecular basis of selective permeability of connexins is complex and includes both size and charge. Braz J Med Biol Res 33:369–378

    Article  PubMed  CAS  Google Scholar 

  27. Muller DJ, Hand GM, Engel A, Sosinsky GE (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21:3598–3607

    Article  PubMed  CAS  Google Scholar 

  28. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  PubMed  CAS  Google Scholar 

  29. Lampe PD, Cooper CD, King TJ, Burt JM (2006) Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci 119:3435–3442

    Article  PubMed  CAS  Google Scholar 

  30. Bagwe S, Berenfeld O, Vaidya D, Morley GE, Jalife J (2005) Altered right atrial excitation and propagation in connexin40 knockout mice. Circulation 112:2245–2253

    Article  PubMed  CAS  Google Scholar 

  31. Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE (2004) Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res 95:1035–1041

    Article  PubMed  CAS  Google Scholar 

  32. van Rijen HV, Eckardt D, Degen J, Theis M, Ott T, Willecke K, Jongsma HJ, Opthof T, de Bakker JM (2004) Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 109:1048–1055

    Article  PubMed  CAS  Google Scholar 

  33. Lee PJ, Pogwizd SM (2006) Micropatterns of propagation. Adv Cardiol 42:86–106

    PubMed  CAS  Google Scholar 

  34. Gollob MH (2006) Cardiac connexins as candidate genes for idiopathic atrial fibrillation. Curr Opin Cardiol 21:155–158

    Article  PubMed  Google Scholar 

  35. Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658–687

    Article  PubMed  CAS  Google Scholar 

  36. Boyett MR, Inada S, Yoo S, Li J, Liu J, Tellez J, Greener ID, Honjo H, Billeter R, Lei M, Zhang H, Efimov IR, Dobrzynski H (2006) Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol 42:175–197

    Article  PubMed  CAS  Google Scholar 

  37. Nishii K, Kumai M, Egashira K, Miwa T, Hashizume K, Miyano Y, Shibata Y (2003) Mice lacking connexin45 conditionally in cardiac myocytes display embryonic lethality similar to that of germline knockout mice without endocardial cushion defect. Cell Commun Adhes 10:365–369

    Article  PubMed  CAS  Google Scholar 

  38. Egashira K, Nishii K, Nakamura K, Kumai M, Morimoto S, Shibata Y (2004) Conduction abnormality in gap junction protein connexin45-deficient embryonic stem cell-derived cardiac myocytes. Anat Rec A Discov Mol Cell Evol Biol 280:973–979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the UAE University (Chris Howarth), Welcome Trust (Ming Lei) and by a travel bursary from the British Council (Chris Howarth), Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Howarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, F.C., Nowotny, N., Zilahi, E. et al. Altered expression of gap junction connexin proteins may partly underlie heart rhythm disturbances in the streptozotocin-induced diabetic rat heart. Mol Cell Biochem 305, 145–151 (2007). https://doi.org/10.1007/s11010-007-9537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9537-z

Keywords

Navigation