Skip to main content

Advertisement

Log in

Influence of oxidatively modified LDL on monocyte-macrophage differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Transendothelial migration of peripheral blood mononuclear cells (PBMCs) and their subsequent interaction with the subendothelial matrix lead to their differentiation to macrophages (mϕs). To study whether preexposure of monocytes in circulation to modified proteins influences their differentiation to mϕs, an in vitro model system using isolated PBMC in culture was used. The effect of modified proteins such as oxidatively modified LDL (ox-LDL), acetylated and non-enzymatically glycated-BSA (NEG-BSA) on the differentiation process was studied by monitoring the upregulation of mϕ specific functions such as endocytosis, production of matrix metalloproteinases (MMPs), expression of surface antigen, activity of β-glucuronidase and down regulation of monocyte specific myeloperoxidase activity. Rate of endocytosis, production of MMPs and β-glucuronidase activity were significantly greater in cells treated with modified proteins irrespective of the nature of modification. Both CuSO4 ox-LDL and HOCl ox-LDL increased the rate of expression of the mϕ specific functions. FACS analysis showed that the rate of upregulation of mϕ specific CD71 and down regulation of monocyte specific CD14 were high in cells supplemented with modified proteins. Studies using PPARγ antagonist and agonist suggest its involvement in CuSO4 ox-LDL induced monocyte-macrophage (mo-mϕ) differentiation whereas the expression of macrophage specific functions in cells exposed to other modified proteins was independent of PPARγ. PBMC isolated from hypercholesterolemic rabbits in culture expressed mϕ specific functions at a faster rate compared to normal controls indicating that these observations are relevant in vivo. These results indicate that preexposure of monocytes to modified proteins promote their differentiation to mϕs and may serve as a feed forward type control for clearing modified proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eischen A, Vincent F, Louis B, Goguel MS, Bohbot A, Bergerat JP, Oberling (1992) Immunophenotypic characterization of human peritoneal and alveolar macrophages and of human blood monocytes differentiated macrophages in the presence of either GM-CSF or M-CSF or a combination of GM-CSF/M-CSF. Nouv Rev Fr Hematol 34:4219–4225

    Google Scholar 

  2. Syrovet T, Thillet J, Chapman J, Simmet T (1997) Lipoprotein (a) is a potent chemoattractant for human peripheral monocytes. Blood 90:2027–2036

    Google Scholar 

  3. Xaus J, Comalada M, Valledor AF, Cardó M, Herrero C, Soler C, Lloberas J, Celada A (2001) Molecular mechanism involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology 204:543–550

    Article  PubMed  CAS  Google Scholar 

  4. Nathan CF, Murray HW, Cohn ZA (1980) The macrophage as an effector cell. N Engl J Med 303:622–626

    Article  PubMed  CAS  Google Scholar 

  5. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    PubMed  CAS  Google Scholar 

  6. Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  7. Williams KJ, Tabas I (1998) The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 9:471–474

    Article  PubMed  CAS  Google Scholar 

  8. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104:503–516

    Article  PubMed  CAS  Google Scholar 

  9. Tabas I (1999) Nonoxidative modifications of lipoproteins in atherogenesis. Annu Rev Nutr 19:123–139

    Article  PubMed  CAS  Google Scholar 

  10. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  PubMed  CAS  Google Scholar 

  11. Acton SL, Scherer PE, Lodish HF, Krieger M (1994) Expression cloning of SR-B1, a CD 36 related Class B scavenger receptor. J Biol Chem 269:21003–21009

    PubMed  CAS  Google Scholar 

  12. Endemann G, Stanton LN, Madden KS, Bryant CM, White RT, Protter AA (1993) CD 36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268:11811–11816

    PubMed  CAS  Google Scholar 

  13. Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D (1996) Cell surface expression of mouse macrosialin and human CD 68 and their role in macrophage receptors for oxidized LDL. Proc Natl Acad Sci USA 93:14833–14838

    Article  PubMed  CAS  Google Scholar 

  14. Stanton LW, White RT, Bryant CH, Protter AA, Endemann G (1992) A macrophage Fc receptor for IgG is also a receptor for oxidized LDL. J Biol Chem 267:22446–22451

    PubMed  CAS  Google Scholar 

  15. Krieger M, Herz J (1994) Structure and function of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor related protein (LRP). Annu Rev Biochem 63:601–637

    PubMed  CAS  Google Scholar 

  16. Hamilton T, Ma G, Chisolm G (1990) Oxidized LDL suppresses the expression of TNF-α mRNA in stimulated murine peritoneal macrophages. J Immunol 144:2343–2350

    PubMed  CAS  Google Scholar 

  17. Fong L, Fong T, Cooper A (1991) Inhibition of LPS induced IL-1 β mRNA expression in mouse macrophage by oxidized LDL. J Lipid Res 32:1899–1910

    PubMed  CAS  Google Scholar 

  18. Malden L, Chait A, Rainer E, Ross R (1991) The influence of oxidatively modified LDL on expression of PDGF by human monocyte-derived macrophage. J Biol Chem 266:13901–13907

    PubMed  CAS  Google Scholar 

  19. Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  PubMed  CAS  Google Scholar 

  20. Nagy L, Tontonoz P, Ronald Evans M (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93:229–240

    Article  PubMed  CAS  Google Scholar 

  21. Jacob SS, Shastry P, Sudhakaran PR (2002) Monocyte-macrophage differentiation in vitro: modulation by extracellular matrix protein substratum. Mol Cell Biochem 233:9–17

    Article  PubMed  CAS  Google Scholar 

  22. Jacob SS, Sudhakaran PR (2001) Monocyte-macrophage differentiation in three-dimensional collagen lattice. Biochem Biophys Acta 1540:50–58

    Article  PubMed  CAS  Google Scholar 

  23. Sudhakaran PR, Jacob SS, Radhika A (2007) Monocyte-macrophage differentiation in vitro: Fibronectin-dependent upregulation of certain macrophage specific activities. Glycoconj J 24:49–55

    Article  PubMed  CAS  Google Scholar 

  24. Huch HY, Pearce SF, Tersner LM, Schindler IL, Silverstein RL (1996) Regulated expression of CD36 in foam cell formation. Blood 87:2020–2025

    Google Scholar 

  25. Greenwood FC, Hunter WM, Clover JS (1963) The preparation of [I]125 labeled human growth hormone of high specific reactivity. Biochem J 89:114–122

    PubMed  CAS  Google Scholar 

  26. Ambili M, Sudhakaran PR (1998) Assay of MMPs in substrata impregnated gels in multiwells. Ind J Biochem Biophys 35:317–320

    CAS  Google Scholar 

  27. Jacob SS, Shastry P, Sudhakaran PR (2001) Influence of non-enzymatically glycated collagen on monocyte-macrophage differentiation. Atherosclerosis 159:333–341

    Article  PubMed  CAS  Google Scholar 

  28. Desser RK, Himmelhoch SR, Evans WH, Taniska M, Mage M, Shelton E (1972) Guinea pig heterophil and neutrophil peroxidase. Arch Biochem Biophys 142:452–465

    Article  Google Scholar 

  29. Kawai Y, Anno K (1971) Mucopolysaccharide degrading enzymes from the liver of squid. Osmastrephes Saloani pacifus I, Hyaluronidase. Biochem Biophys Acta 242:428–434

    PubMed  CAS  Google Scholar 

  30. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase (SOD). Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  31. Lowry OH, Roseburg NJ, Parr AI, Randall RJ (1951) Protein measurement with Folin-phenol reagent. J Biol Chem 11093:265–275

    Google Scholar 

  32. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoprotein in human serum. J Clin Invest 34:1345–1353

    Article  Google Scholar 

  33. Basu SK, Goldstein JL, Anderson RGW, Brown M (1976) Degradation of cationised LDL and regulation of cholesterol metabolism in homozygous familial hypercholesteremia fibroblasts. Proc Natl Acad Sci USA 73:3178–3184

    Article  PubMed  CAS  Google Scholar 

  34. Thao NK, Ziad AM, Sarsat VW, Canteloup S, Latscha BD (1999) Oxidized low density lipoprotein induces macrophage respiratory burst via its protein moiety: a novel pathway in atherogenesis. Biochem Biophys Res Commun 263:804–809

    Article  Google Scholar 

  35. Sarsat VW, Friedlander M, Blandin CC, Thao NK, Nguyen AT, Canteloup S, Jungers P, Dayer JM, Drucke T, Latscha BD (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161:2524–2532

    Google Scholar 

  36. Bunn HG, Shapiro R, Mc Manus M, Garrick L, Mc Donald MJ, Gallop PM, Gabbay KH (1979) Structural heterogeneity of human Hemoglobin due to non-enzymatic glycosylation. J Biol Chem 254:3892–3898

    PubMed  CAS  Google Scholar 

  37. Frostegard J, Nilsson J, Haegerstrand, Hamsten A, Wigzell H, Gidlund M (1990) Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U937. Proc Natl Acad Sci USA 87:904–908

    Article  PubMed  CAS  Google Scholar 

  38. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    PubMed  CAS  Google Scholar 

  39. Xu XP, Meisel SR, Ong JM, Kaul S, Ceroek B, Rajavashisth TB, Sharifi B, Shah PK (1999) Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation 99:993–998

    PubMed  CAS  Google Scholar 

  40. Ardans JA, Economou AP, Martinson JM Jr, Zhou M, Wahl LM (2002) oxidized low-density and high-density lipoproteins regulate the production of matrix metalloproteinase-1 and -9 by activated monocytes. J Leukoc Biol 71:1012–1018

    PubMed  CAS  Google Scholar 

  41. Lee KJ, Kim HA, Kim PH, Lee H, Ma KR, Park JH, Kim DJ, Hahn JH (2004) Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD-36-mediated activation of PPARγ. Exp Mol Med 36:534–544

    PubMed  CAS  Google Scholar 

  42. Hayden JM, Brachova L, Higgins K, Obermiller L, Sevanian A, Khandrika S, Reaven PD (2002) Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. J Lipid Res 43:26–35

    PubMed  CAS  Google Scholar 

  43. Itabe H, Mori M, Fugimoto Y, Higashi Y, Takano T (2003) Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem 134:459–465

    Article  PubMed  CAS  Google Scholar 

  44. Han CY, Park SY, Pak YK (2000) Role of endocytosis in the transactivation of nuclear factor-κB by oxidized low-density lipoprotein. Biochem J 350:829–837

    Article  PubMed  CAS  Google Scholar 

  45. Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL , Auwerx J, Palinski W, Glass CK (1998) Expression of the peroxisome proliferator-activated receptor gamma (PPAR gamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 95:7614–7619

    Article  PubMed  CAS  Google Scholar 

  46. Ricote M, Huang JT, Welch JS, Glass CK (1999) The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol 66:733–739

    PubMed  CAS  Google Scholar 

  47. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-deoxy 812,14-prostaglandin J2 is a ligand for adipocyte determination factor PPARγ. Cell 83:803–812

    Article  PubMed  CAS  Google Scholar 

  48. Thomas W, Juergen G, Steffi K (2005) Hypochlorite-oxidized low-density lipoprotein upregulates CD36 and PPARγ mRNA expression and modulates SR-BI gene expression in murine macrophages. Mol Cell Biochem 277:143–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance received from the Indian Council of Medical Research to A. Radhika in the form of SRF is gratefully acknowledged. We thank Dr. Padma Shastry, Scientist F, National Centre for Cell Science, Pune, India, for providing the necessary guidance and facilities in doing FACS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumana R. Sudhakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radhika, A., Jacob, S.S. & Sudhakaran, P.R. Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Mol Cell Biochem 305, 133–143 (2007). https://doi.org/10.1007/s11010-007-9536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9536-0

Keywords

Navigation