Skip to main content

Advertisement

Log in

Down-regulation of neuropathy target esterase by protein kinase C activation with PMA stimulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neuropathy target esterase (NTE) was originally identified as the primary target site of those organophosphorus compounds that induce delayed neuropathy in human and some animals. Here we examined the role of protein kinase C (PKC) in the regulation of the NTE activity in mammalian cells. Six-hour exposure of human neuroblastoma SK-N-SH cell to a PKC activator phorbol 12-myristate 13-acetate (PMA) decreased the activity of NTE, and this effect was blocked by the PKC inhibitor staurosporine. These results suggest that PKC down-regulates the activity of NTE. NTE protein levels were down-regulated by PMA-stimulation as detected by Western blot analysis using the NTE-specific antibody, which resulted from down-regulation of NTE mRNA level as verified by real-time reverse transcription polymerase chain reaction (RT-PCR). However, there were no changes in the activity or protein levels of stable expression of NTE esterase activity domain (NEST) in SK-N-SH cells and transient expression of full-length NTE construct in COS7 cells driven by cytomegalovirus (CMV) promoter rather than by the cell’s own one, despite the absence or presence of PMA stimulation. Together, these findings suggest that stimulation with PMA reduces the expression of NTE mRNA levels but does not affect the exogenous promoter-driven NTE expression in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cAMP:

Cyclic AMP

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediaminetetraacetic acid

ECL:

Enhanced chemiluminescence

ER:

Endoplasmic reticulum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GPC:

Glycerophosphocholine

NEST:

NTE esterase activity domain

NP40:

Nonidet P-40

NTE:

Neuropathy target esterase

OPIDN:

OP-induced delayed neuropathy

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PKC:

Protein kinase C

PMA:

Phorbol 12-myristate 13-acetate

PtdCho:

Phosphatidylcholine

PV:

Phenyl valerate

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Johnson MK (1974) The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters. J Neurochem 23:785–789

    Article  PubMed  CAS  Google Scholar 

  2. Glynn P (2003) NTE: one target protein for different toxic syndromes with distinct mechanisms? Bioessays 25:742–745

    Article  PubMed  Google Scholar 

  3. Li Y, Dinsdale D, Glynn P (2003) Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in Mammalian cells. J Biol Chem 278:8820–8825

    Article  PubMed  CAS  Google Scholar 

  4. Akassoglou K, Malester B, Xu J, Tessarollo L, Rosenbluth J, Chao MV (2004) Brain-specific deletion of neuropathy target esterase/swiss cheese results in neurodegeneration. Proc Natl Acad Sci USA 101:5075–5080

    Article  PubMed  CAS  Google Scholar 

  5. Quistad GB, Barlow C, Winrow CJ, Sparks SE, Casida JE (2003) Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc Natl Acad Sci USA 100:7983–7987

    Article  PubMed  CAS  Google Scholar 

  6. Zaccheo O, Dinsdale D, Meacock PA, Glynn P (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Biol Chem 279:24024–24033

    Article  PubMed  CAS  Google Scholar 

  7. Muhlig-Versen M, da Cruz AB, Tschape JA, Moser M, Buttner R, Athenstaedt K, Glynn P, Kretzschmar D (2005) Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. J Neurosci 25:2865–2873

    Article  PubMed  CAS  Google Scholar 

  8. Winrow CJ, Hemming ML, Allen DM, Quistad GB, Casida JE, Barlow C (2003) Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat Genet 33:477–485

    Article  PubMed  CAS  Google Scholar 

  9. Moser M, Li Y, Vaupel K, Kretzschmar D, Kluge R, Glynn P, Buettner R (2004) Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice. Mol Cell Biol 24:1667–1679

    Article  PubMed  CAS  Google Scholar 

  10. Lush MJ, Li Y, Read DJ, Willis AC, Glynn P (1998) Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J 332:1–4

    PubMed  CAS  Google Scholar 

  11. Dremier S, Kopperud R, Doskeland SO, Dumont JE, Maenhaut C (2003) Search for new cyclic AMP-binding proteins. FEBS Lett 546:103–107

    Article  PubMed  CAS  Google Scholar 

  12. Glynn P (2005) Neuropathy target esterase and phospholipid deacylation. Biochim Biophy Acta (BBA)-Mol Cell Biol Lipids 1736:87–93

    Article  CAS  Google Scholar 

  13. Murray JP, McMaster CR (2005) Nte1p-mediated deacylation of phosphatidylcholine functionally interacts with Sec14p. J Biol Chem 280:8544–8552

    Article  PubMed  CAS  Google Scholar 

  14. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Article  PubMed  CAS  Google Scholar 

  15. Toker A (1998) Signaling through protein kinase C. Front Biosci 3:D1134–D1147

    PubMed  CAS  Google Scholar 

  16. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  17. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  18. Wang A, Johnson CA, Jones Y, Ellisman MH, Dennis EA (2000) Subcellular localization and PKC-dependent regulation of the human lysophospholipase A/acyl-protein thioesterase in WISH cells. Biochim Biophys Acta 1484:207–214

    PubMed  CAS  Google Scholar 

  19. Chang PA, Chen R, Wu YJ (2005) Reduction of neuropathy target esterase does not affect neuronal differentiation, but moderate expression induces neuronal differentiation in human neuroblastoma (SK-N-SH) cell line. Mol Brain Res 141:30–38

    Article  PubMed  CAS  Google Scholar 

  20. Johnson MK (1977) Improved assay of neurotoxic esterase for screening organophosphates for delayed neurotoxicity potential. Arch Toxicol 37:113–115

    Article  PubMed  CAS  Google Scholar 

  21. Kayyali US, Moore TB, Randall JC, Richardson RJ (1991) Neurotoxic esterase (NTE) assay: optimized conditions based on detergent-induced shifts in the phenol/4-aminoantipyrine chromophore spectrum. J Anal Toxicol 15:86–89

    PubMed  CAS  Google Scholar 

  22. Ehrich M, Correll L, Veronesi B (1997) Acetylcho1inesterase and neuropathy target esterase inhibitions in neuroblastoma cells to distinguish organophosphorus compounds causing acute and delayed neurotoxicity. Fundam Appl Toxico1 38:55–63

    Article  CAS  Google Scholar 

  23. Chang PA, Wu YJ, Li W, Leng XF (2006) Effect of carbamate esters on neurite outgrowth in differentiating human SK-N-SH neuroblastoma cells. Chem Biol Interact 159:65–72

    Article  PubMed  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Gallazzini M, Ferraris JD, Kunin M, Morris RG, Burg MB (2006) Neuropathy target esterase catalyzes osmoprotective renal synthesis of glycerophosphocholine in response to high NaCl. Proc Natl Acad Sci USA 103:15260–15265

    Article  PubMed  CAS  Google Scholar 

  26. Quesada E, Sabater E, Sogorb MA, Vilanova E, Carrera V (2007) Recovery of neuropathy target esterase activity after inhibition with mipafox and O-hexyl O-2,5-dichlorophenyl phosphoramidate in bovine chromaffin cell cultures. Chem Biol Interact 165:99–105

    Article  PubMed  CAS  Google Scholar 

  27. Caroldi S, Lotti M (1982) Neurotoxic esterase in peripheral nerve: assay, inhibition and rate of resynthesis. Toxicol Appl Pharmacol 62:498–501

    Article  PubMed  CAS  Google Scholar 

  28. Carrington CD, Abou-Donia MB (1984) The correlation between the recovery rate of neurotoxic esterase activity and sensitivity to organophosphorus-induced delayed neurotoxicity. Toxicol Appl Pharmacol 75:350–357

    Article  PubMed  CAS  Google Scholar 

  29. Meredith C, Johnson MK (1988) Neuropathy target esterase: Rates of turnover in vivo following covalent inhibition with phenyl di-n-pentylphosphinate. J Neurochem 51:1097–1101

    Article  PubMed  CAS  Google Scholar 

  30. Moretto A, Capodicasa E, Peraica M, Lotti M (1991) Age sensitivity to organophosphate-induced delayed polyneuropathy. Biochemical and toxicological studies in developing chicks. Biochem Pharmacol 41:1497–1504

    Article  PubMed  CAS  Google Scholar 

  31. Rose SD, Morash SC, Ridgway DN, Byers DM, Cook HW (1996) Overexpression of MARCKS, but not protein kinase C-alpha, increases phorbol ester-stimulated synthesis of phosphatidylcholine in human SK-N-MC neuroblastoma cells. J Neurochem 66:1766–1769

    Article  PubMed  CAS  Google Scholar 

  32. Morash SC, Rose SD, Byers DM, Ridgway ND, Cook HW (1998) Overexpression of myristoylated alanine-rich C-kinase substrate enhances activation of phospholipase D by protein kinase C in SK-N-MC human neuroblastoma cells. Biochem J 332:321–327

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (30470228) and the National High Technology Research and Development Program of China (863 Program) (2006AA06Z423). The authors would like to thank Dr. Paul Glynn for providing the NTE cDNA clone D16, Dr. Yan-Lin Wang for providing the COS7 cell, Prof. Xin-Fu Leng for technical guidance in the synthesis of mipafox and phenyl valerate, and Dr. Susan Nozell for polishing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jun Wu.

Additional information

Rui Chen and Ping-An Chang contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Chang, PA., Long, DX. et al. Down-regulation of neuropathy target esterase by protein kinase C activation with PMA stimulation. Mol Cell Biochem 302, 179–185 (2007). https://doi.org/10.1007/s11010-007-9439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9439-0

Keywords