Skip to main content
Log in

Plasminogen and angiostatin interact with heat shock proteins

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85–90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin’s interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15–20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin’s binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jaffe EA (1987) Cell biology of endothelial cells. Human Pathol 18: 234–239

    Article  CAS  Google Scholar 

  2. Borsum T (1991) Biochemical properties of vascular endothelial cells. Virchows Arch B Cell Pathol 60:279–286

    Article  CAS  Google Scholar 

  3. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    PubMed  CAS  Google Scholar 

  4. Duffy MJ, Maguire TM, McDermott TW, O’Higgins N (1999) Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71:130–135

    Article  PubMed  CAS  Google Scholar 

  5. Schmitt M., Wilhem OG, Reuning U, Kruger A, Harbeck N, Engyel E, Graeff H, Gansbacher B, Kessler H, Burgle M, Sturzebecher J, Sperl S, Magdolen V (2000) The urokinase plasminogen activation system as a novel targey for tumor therapy. Fibrinol Proteol 14:114–132

    Article  CAS  Google Scholar 

  6. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  CAS  Google Scholar 

  7. O’Reilly MS (1997) Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. EXS 79: 273–294

    PubMed  CAS  Google Scholar 

  8. Daly ME, Makris A, Reed M, Lewis CE (2003) Hemostatic regulators of tumor angiogenesis: a source of antiangiogenic agents for cancer treatment. JNCI 95:1660–1673

    PubMed  CAS  Google Scholar 

  9. Ganz PR, Dupuis D, Dudani AK, Hashemi S (1991) Characterization of plasminogen binding to human capillary and arterial endothelial cells. Biochem Cell Biol 69:442–448

    PubMed  CAS  Google Scholar 

  10. Dudani AK, Hashemi S, Aye MT, Ganz PR (1991) Identification of an endothelial cell surface protein that binds plasminogen. Mol Cell Biochem 108:133–139

    Article  PubMed  CAS  Google Scholar 

  11. Dudani AK, Cummings C, Hashemi S, Ganz PR (1993) Isolation of a novel 45 kDa endothelial cell plasminogen receptor. Thromb Res 69:185–196

    Article  PubMed  CAS  Google Scholar 

  12. Dudani AK, Pluskota A, Ganz PR (1994) Interaction of tissue plasminogen activator with the endothelial cell 45 kDa plasminogen receptor. Biochem Cell Biol 72:126–131

    Article  PubMed  CAS  Google Scholar 

  13. Dudani AK, Ganz PR (1996) Endothelial cell surface actin serves as a receptor for plasminogen, tissue plasminogen activator and lipoprotein(a). Brit J Hematol 95:168–178

    Article  CAS  Google Scholar 

  14. Andronicos NM, Ranson M (2005) The toplogy of plasminogen binding and activation on the surface of human breast cancer cells. Brit J Cancer 85:909–916

    Article  Google Scholar 

  15. Moroianu J, Fett JW, Riordan JF, Vallee BL (1993) Actin is a surface component of calf pulmonary artery endothelial cells in culture. Proc Natl Acad Sci USA 90:3815–3819

    Article  PubMed  CAS  Google Scholar 

  16. Owen MJ, Auger J, Barber BH, Edwards AJ, Walsh FS, Crumpton MJ (1978) Actin may be present on the lymphocyte surface. Proc Natl Acad Sci USA 75:4484–4488

    Article  PubMed  CAS  Google Scholar 

  17. Pardridge WM, Nowlin DM, Choi TB, Yang J, Calacay J, Shively JE (1989) Brain capillary 46,000 dalton protein is cytoplasmic actin and is localized to the endothelial cell plasma membrane. J Cereb Flow Metab 9:675–680

    CAS  Google Scholar 

  18. Hu GF, Chang SI, Riordan JF, Vallee BL (1991) An angiogenin-binding protein from endothelial cells. Proc Natl Acad Sci USA 88:2227–2231

    Article  PubMed  CAS  Google Scholar 

  19. Hu GF, Strydom DJ, Fett JW, Riordan JF, Vallee BL (1993) Actin is a binding protein for angiogenin. Proc Natl Acad Sci USA 90:1217–1221

    Article  PubMed  CAS  Google Scholar 

  20. Dudani AK, Ben-Tchavthchavadze M, Porter S, Tackaberry E (2005) Angiostatin and plasminogen share binding to endothelial cell surface actin. Biochem Cell Biol 83:28–35

    Article  PubMed  CAS  Google Scholar 

  21. Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator: Identity with Annexin II. J Biol Chem 269:21191–21197

    PubMed  CAS  Google Scholar 

  22. Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF (1991) Role of cell surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30:1682–1691

    Article  PubMed  CAS  Google Scholar 

  23. Hembrough T, Li L, Gonias SL (1996) Cell surface cytokeratin 8 is the major plasminogen receptor on breast cancer cells and is required for the accelerated activation of cell-associated plasminogen by tissue-type plasminogen activator. J Biol Chem 271:25684–25691

    Article  PubMed  CAS  Google Scholar 

  24. Herren T, Swaisgood C, Plow EF (2003) Regulation of plasminogen receptors. Front Biosci 8:d1–d8

    Article  PubMed  CAS  Google Scholar 

  25. Schaumburg J, Diekmann O, Hagendorf P, Bergmann S, Rohde M, Hammerschmidt S, Jansh L, Wehland J, Karst U (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006

    Article  PubMed  CAS  Google Scholar 

  26. Xu Q (2002) Role of heat shock proteins in atherosclerosis. Arterioscl Thromb Vas Biol 22:1547–1559

    Article  CAS  Google Scholar 

  27. Zugal U, Kaufmann SHE (1999) Role of heat shock proteins in protection from pathogenesis of infectitious diseases. Clin Microbiol Rev 12:19–39

    Google Scholar 

  28. Piotrowicz RS, Hickey E, Levin EG (1998) Heat shock protein 27 kDa expression and phosphorylation regulates endothelial cell migration. FASEB J 12:1481–1490

    PubMed  CAS  Google Scholar 

  29. Pockley G (2001) Heat shock proteins in health and disease: therapeutic targets or therapeutic agents. Expert Rev Mol Med 01:3–22

    Google Scholar 

  30. Mounier N, Arrigo A (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7: 167–176

    Article  PubMed  CAS  Google Scholar 

  31. Xu Q, Schett G, Seitz CS, Hu Y, Gupta RS, Wick G (1994) Surface staining and cytotoxic activity of heat shock protein 60 antibody in stressed aortic endothelial cells. Circ Res 75:1078–1085

    PubMed  CAS  Google Scholar 

  32. Shin KB, Wong H, Yim AM, Le Naour F, Birchory F, Jang JH, Zhao R, Puravas E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  PubMed  CAS  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  34. Fukao H, Hagiya Y, Ueshima S, Okada K, Takaishi T, Izaki S, Matsuo O (1996) Effect of heat shock on the expression of urokinase-type plasminogen activator receptor in human umbilical vein endothelial cells. Thromb Hemostat 75:352–358

    CAS  Google Scholar 

  35. Lei H, Romeo G, Kazlauskas A (2004) Heat shock protein 90-dependent translocation of annexin II to the surface of endothelial cells modulates plasmin activity in the diabetic rat aorta. Circ Res 94:902–908

    Article  PubMed  CAS  Google Scholar 

  36. Tuszynski GP, Sharma MR, Rothman V, Sharma MC (2002) Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Microvasc Res 64:448–462

    Article  PubMed  CAS  Google Scholar 

  37. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L et al (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96:2811–2816

    Article  PubMed  CAS  Google Scholar 

  38. Tarui T, Majumdar M, Miles LA, Ruf W, Takada Y (2001) Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem 276:39562–39568

    Article  PubMed  CAS  Google Scholar 

  39. Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L (2001) Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 152:1247–1254

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Dudani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudani, A.K., Mehic, J. & Martyres, A. Plasminogen and angiostatin interact with heat shock proteins. Mol Cell Biochem 300, 197–205 (2007). https://doi.org/10.1007/s11010-006-9384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9384-3

Keywords

Navigation