Skip to main content
Log in

PTEN down regulates AP-1 and targets c-fos in human glioma cells Via PI3-kinase/Akt pathway

  • Original Paper
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The continual activation of signaling cascades results in dramatic consequences that include loss of cellular growth control and neoplastic transformation. We show here that phosphoinositide 3-kinase and its mediator Akt was constitutively activated in glioma and that this might be due to the aberrant expression of their natural antagonist PTEN. The PTEN (phosphatase and tensin homologue deleted on chromosome ten) tumor suppressor gene modulates cell growth and survival through mechanisms that are incompletely understood. In this study, we investigated the possibility that PTEN mediates its effects through modulation of transcription factor AP-1, which is in part due to decrease in c-fos expression which was dependent on PI3kinase activity. Consistent with a reduction in the c-fos levels, an AP-1 dependent reporter gene was poorly induced in the PTEN expressing cell lines. In contrast to its effect on c-fos, PTEN did not affect the expression of c-Jun and other fos family members. We also show that the effect of PTEN on c-fos expression was due to its ability to antagonize PI3-kinase and could be mimicked by the expression of dominant negative Akt mutant. Taken together, these data indicate that the aberrant expression of PTEN contributes to the activation of the PI3kinase/Akt pathway and its transcription factor mediators in glioma. We conclude that the ectopic expression of PTEN down regulates the proliferation of glioma cells through the suppression of AP-1 and that this target might be essential for its central role in the growth and survival of glioma cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walker MD, Alexander E, Hunt WE (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: A cooperative clinical trial. J Neurosurg 49:333–343

    Article  PubMed  CAS  Google Scholar 

  2. Walker MD, Green SB, Byar DP (1980) TNF and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. N Engl J Med 303:1323–1329

    Article  PubMed  CAS  Google Scholar 

  3. Davis FG, McCarthy BJ, Freels S (1999) The conditional probability of survival of patients with primary malignant brain tumors: surveillance, epidemiology, and end results (SEER) data. Cancer 85:485–491

    Article  PubMed  CAS  Google Scholar 

  4. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245

    Article  PubMed  CAS  Google Scholar 

  5. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    Article  PubMed  CAS  Google Scholar 

  6. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK (1998) The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci USA 95:13513–13518

    Article  PubMed  CAS  Google Scholar 

  7. Vazquez F, Sellers WR (2000) The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta 1470:M21–M35

    PubMed  CAS  Google Scholar 

  8. Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signaling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  9. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  10. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1997) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  Google Scholar 

  11. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  12. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401:86–89

    Article  PubMed  CAS  Google Scholar 

  13. Reddy SAG, Huang JH, Liao L (2000) Phosphatidylinositol 3-kinase as a mediator of TNF-induced NF-kappa B activation. J Immunol 164:1355–1363

    PubMed  CAS  Google Scholar 

  14. Koul D, Yao Y, Abbruzzese JL, Yung WK, Reddy SA (2001) Tumor suppressor MMAC/PTEN inhibits cytokine-induced NFkappaB activation without interfering with the IkappaB degradation pathway. J Biol Chem 276:11402–11408

    Article  PubMed  CAS  Google Scholar 

  15. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  PubMed  CAS  Google Scholar 

  16. Curran T, Franza BR Jr (1988) Fos and Jun: the AP-1 connection. Cell 55:395–397

    Article  PubMed  CAS  Google Scholar 

  17. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  PubMed  CAS  Google Scholar 

  18. Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH, Spiegelman BM (1995) c-fos is required for malignant progression of skin tumors. Cell 82:721–732

    Article  PubMed  CAS  Google Scholar 

  19. Malliri AM, Symons RF, Hennigan AF, Hurlstone RF, Lamb T, Wheeler BW (1998) The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J Cell Biol 143:1087–1099

    Article  PubMed  CAS  Google Scholar 

  20. Belguise KN, Kersual F, Galtier D (2005) FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene 24:1434–1444

    Article  PubMed  CAS  Google Scholar 

  21. Kustikova O, Kramerov D, Grigorian M, Berezin V, Bock E, Lukanidin E, Tulchinsky E (1998) Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol Cell Biol 18:7095–7105

    PubMed  CAS  Google Scholar 

  22. Angel P, Karin M (1991) The role of Jun, Fos, the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    PubMed  CAS  Google Scholar 

  23. Jochum W, Passegué E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412

    Article  PubMed  CAS  Google Scholar 

  24. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  PubMed  CAS  Google Scholar 

  25. Huang C, Schmid PC, Ma WY, Schmid HH, Dong Z (1997) Phosphatidylinositol-3 kinase is necessary for 12-O-tetradecanoylphorbol-13-acetate-induced cell transformation and activated protein 1 activation. J Biol Chem 272:4187–4194

    Article  PubMed  CAS  Google Scholar 

  26. Koul D, Jasser SA, Lu Y, Davies MA, Shen R, Shi Y, Mills GB, Yung WK (2002) Motif analysis of the tumor suppressor gene MMAC/PTEN identifies tyrosines critical for tumor suppression and lipid phosphatase activity. Oncogene 15:2357–2364

    Article  Google Scholar 

  27. Reddy SAG, Huang JH, Liao WSL (1997) Phosphatidylinositol 3-kinase in interleukin 1 signaling. Physical interaction with the interleukin 1 receptor and requirement in NFkappaB and AP-1 activation. J Biol Chem 272:29167–29172

    Article  PubMed  CAS  Google Scholar 

  28. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102

    Article  PubMed  CAS  Google Scholar 

  29. Gopalan SM, Wilczynska KM, Konik BS, Bryan L, Kordula T (2006) Astrocyte-specific expression of the alpha1-antichymotrypsin and glial fibrillary acidic protein genes requires activator protein-1. J Biol Chem 281:1956–1963

    Article  PubMed  CAS  Google Scholar 

  30. Sizemore N, Leung S, Stark GR (1999) Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 19:4798–4805

    PubMed  CAS  Google Scholar 

  31. Huang C, Ma WY, Dong Z (1996) Requirement for phosphatidylinositol 3-kinase in epidermal growth factor-induced AP-1 transactivation and transformation in JB6 P+ cells. Mol Cell Biol 16:6427–6435

    PubMed  CAS  Google Scholar 

  32. Van Leeuwen JE, Paik PK, Samelson LE (1999) Activation of nuclear factor of activated T cells-(NFAT) and activating protein 1 (AP-1) by oncogenic 70Z Cbl requires an intact phosphotyrosine binding domain but not Crk(L) or p85 phosphatidylinositol 3-kinase association. J Biol Chem 274:5153–5162

    Article  PubMed  Google Scholar 

  33. Fahy BN, Schlieman M, Virudachalam S, Bold RJ (2003) AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2. Br J Cancer 89:391–397

    Article  PubMed  CAS  Google Scholar 

  34. Shah SA, Potter MW, Hedeshian MH, Kim RD, Chari RS, Callery MP (2001) PI-3′ kinase and NF kappaB cross-signaling in human pancreatic cancer cells. J Gastrointest Surg 5:603–612

    Article  PubMed  CAS  Google Scholar 

  35. Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT (1995) Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 268:100–102

    Article  PubMed  CAS  Google Scholar 

  36. Barber JR, Verma IM (1987) Modification of fos proteins: phosphorylation of c-fos, but not v-fos, is stimulated by 12-tetradecanoyl-phorbol-13-acetate and serum. Mol Cell Biol 7:2201–2211

    PubMed  CAS  Google Scholar 

  37. Holt JT, Gopal TV, Moulton AD, Nienhuis AW (1986) Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc Natl Acad Sci USA 83:4794–4798

    Article  PubMed  CAS  Google Scholar 

  38. Piechaczyk M, Blanchard JM (1994) c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17:93–131

    PubMed  CAS  Google Scholar 

  39. Bland KI, Konstadoulakis MM, Vezeridis MP, Wanebo HJ (1995) Oncogene protein co-expression. Value of Ha-ras, c-myc, c-fos, and p53 as prognostic discriminants for breast carcinoma. Ann Surg 221:706–718

    Article  PubMed  CAS  Google Scholar 

  40. Arteaga CL, Holt JT (1996) Tissue-targeted antisense c-fos retroviral vector inhibits established breast cancer xenografts in nude mice. Cancer Res 56:1098–1103

    PubMed  CAS  Google Scholar 

  41. Gee JM, Ellis IO, Robertson JF, Willsher P, McClelland RA, Hewitt KN, Blamey RW, Nicholson RI (1995) Immunocytochemical localization of Fos protein in human breast cancers and its relationship to a series of prognostic markers and response to endocrine therapy. Int J Cancer 22:269–273

    Article  Google Scholar 

  42. Preston GA, Lyon TT, Yin Y, Lang JE, Solomon G, Annab L, Srinivasan DG, Alcorta DA, Barrett JC (1996) Induction of apoptosis by c-Fos protein. Mol Cell Biol 16:211–218

    PubMed  CAS  Google Scholar 

  43. Gajate C, Alonso MT, Schimmang T, Mollinedo F (1996) C-Fos is not essential for apoptosis. Biochem Biophys Res Commun 21:267–272

    Article  Google Scholar 

  44. Roffler-Tarlov S, Brown JJ, Tarlov E, Stolarov J, Chapman DL, Alexiou M, Papaioannou VE (1996) Programmed cell death in the absence of c-Fos and c-Jun. Development 122:1–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the University Cancer Foundation at The University of Texas M .D. Anderson Cancer Center to D.K and grant R01 CA-056041 from the National Institute of Health to W. K. A. Yung. We thank Betty P. Notzon (Department of Scientific publications, M. D. Anderson) for editorial assistance, Dr. John F. de Groot (Department of Neuro-Oncology, M. D. Anderson) for critical reading of the manuscript and Randall Evans (Department of Bone Marrow transplantation, M. D. Anderson) for his contribution to the confocal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimpy Koul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koul, D., Shen, R., Shishodia, S. et al. PTEN down regulates AP-1 and targets c-fos in human glioma cells Via PI3-kinase/Akt pathway. Mol Cell Biochem 300, 77–87 (2007). https://doi.org/10.1007/s11010-006-9371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9371-8

Keywords

Navigation