Skip to main content

Gene expression profiles of endothelial progenitor cells by oligonucleotide microarray analysis

Abstract

Among the many tissue stem or progenitor cells recently being unveiled, endothelial progenitor cells (EPCs) have attracted particular attention, not only because of their cardinal role in vascular biology and embryology but also because of their potential use in the therapeutic development of a variety of postnatal diseases, including cardiovascular and peripheral vascular disorders and cancer. The aim of this study is to provide some basic and comprehensive information on gene expression of EPCs to characterize the cells in molecular terms. Here, we focus on EPCs derived from CD34-positive mononuclear cells of human umbilical cord blood. The EPCs were purified and expanded in culture and analyzed by a high-density oligonucleotide microarray and real-time RT-PCR analysis. We identified 169 up-regulated and 107 down-regulated genes in the EPCs compared with three differentiated endothelial cells of human umbilical vein endothelial cells (HUVEC), human lung microvascular endothelial cells (LMEC) and human aortic endothelial cells (AoEC). It is expected that the obtained list include key genes which are critical for EPC function and survival and thus potential targets of EPC recognition in vivo and therapeutic modulation of vasculogenesis in cancer as well as other diseases, in which de novo vasculogenesis plays a crucial role. For instance, the list includes Syk and galectin-3, which encode protein tyrosine kinase and β-galactoside-binding protein, respectively, and are expressed higher in EPCs than the three control endothelial cells. In situ hybridization showed that the genes were expressed in isolated cells in the fetal liver at E11.5 and E14.5 of mouse development.

This is a preview of subscription content, access via your institution.

References

  1. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  3. Vailhe B, Vittet D, Feige JJ (1995) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81:439–452

    Google Scholar 

  4. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    PubMed  CAS  Google Scholar 

  5. Asahara T, Murohara T, Sullivan A, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:965–967

    Article  Google Scholar 

  6. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    Article  PubMed  CAS  Google Scholar 

  8. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  PubMed  CAS  Google Scholar 

  9. Gory-Faure S, Prandini H, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M, Huber P (1999) Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126:2093–2102

    PubMed  CAS  Google Scholar 

  10. Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531

    Article  PubMed  CAS  Google Scholar 

  11. Terstappen L, Huang S, Safford M, Lansdorp PM, Loken MR (1991) Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+ CD38− progenitor cells. Blood 77:1218–1227

    PubMed  CAS  Google Scholar 

  12. Civin C, Almeida-Porada G, Lee MJ, Olweus J, Terstappen LW, Zanjani ED (1996) Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 88:4102–4109

    PubMed  CAS  Google Scholar 

  13. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T (2001) HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 108:399–405

    Article  PubMed  CAS  Google Scholar 

  14. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105:1527–1536

    PubMed  CAS  Google Scholar 

  15. Broxmeyer E, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86:3828–3832

    Article  PubMed  CAS  Google Scholar 

  16. Kawada H, Ando K, Tsuji T, Shimakura Y, Nakamura Y, Chargui J, Hagihara M, Itagaki H, Shimizu T, Inokuchi S, Kato S, Hotta T (1999) Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system. Exp Hematol 27:904–915

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, Hotta T, Kato S (1999) Ex vivo generation of CD34(+) cells from CD34(−) hematopoietic cells. Blood 94:4053–4059

    PubMed  CAS  Google Scholar 

  18. Tsuji T, Ogasawara H, Aoki Y, Tsurumaki Y, Kodama H (1996) Characterization of murine stromal cell clones established from bone marrow and spleen. Leukemia 10:803–812

    PubMed  CAS  Google Scholar 

  19. Aoyagi K, Tatsuta T, Nishigaki M, Akimoto S, Tanabe C, Omoto Y, Hayashi S, Sakamoto H, Sakamoto M, Yoshida T, Terada M, Sasaki H (2003) A faithful method for PCR-mediated global mRNA amplification and its integration into microarray analysis on laser-captured cells. Biochem Biophys Res Commun 300:915–920

    Article  PubMed  CAS  Google Scholar 

  20. Ohnami S, Aoki K, Yoshida K, Ohnami S, Hatanaka K, Suzuki K, Sasaki H, Yoshida T (2003) Expression profiles of pancreatic cancer cell lines infected with antisense K-ras-expressing adenoviral vector. Biochem Biophys Res Commun 309:798–803

    Article  PubMed  CAS  Google Scholar 

  21. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  22. Koga K, Todaka T, Morioka M, Hamada J, Kai Y, Yano S, Okamura A, Takakura N, Suda T, Ushio Y (2001) Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 61:6248–6254

    PubMed  CAS  Google Scholar 

  23. Garlanda C, Dejana E (1997) Heterogeneity of endothelial cells, specific markers. Arterioscler Thromb Vasc Biol 17:1193–1202

    PubMed  CAS  Google Scholar 

  24. Heyward SA, Dubois-Stringfellow N, Rapoport R, Bautch VL (1999) Expression and inducibility of vascular adhesion receptors in development. FASEB J 9:956–962

    Google Scholar 

  25. Weiss MJ, Orkin SH (1996) In vitro differentiation of murine embryonic stem cells, new approaches to old problems. J Clin Invest 97:591–595

    Article  PubMed  CAS  Google Scholar 

  26. Flamme I, Risau W (1992) Induction of vasculogenesis and hematopoiesis in vitro. Development 116:435–439

    PubMed  CAS  Google Scholar 

  27. Yagi T, Morimoto A, Eguchi M, Hibi S, Sako M, Ishii E, Mizutani S, Imashuku S, Ohki M, Ichikawa H (2003) Identification of a gene expression signature associated with pediatric AML prognosis. Blood 102:1849–1856

    Article  PubMed  CAS  Google Scholar 

  28. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498

    PubMed  CAS  Google Scholar 

  29. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Article  PubMed  CAS  Google Scholar 

  30. Yano M, Iwama A, Nishio H, Suda J, Takada G, Suda T (1997) Expression and function of murine receptor tyrosine kinases, TIE and TEK, in hematopoietic stem cells. Blood 89:4317–4326

    PubMed  CAS  Google Scholar 

  31. Bagley RG, Walter-Yohrling J, Cao X, Weber W, Simons B, Cook BP, Chartrand SD, Wang C, Madden SL, Teicher BA (2003) Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer Res 63:5866–5873

    PubMed  CAS  Google Scholar 

  32. Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E, Blancato JK, Vezza PR, McLeskey SW, Mangeat PH, Mueller SC (2000) The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406:742–747

    Article  PubMed  CAS  Google Scholar 

  33. Chu DH, Morita CT, Weiss A (1998) The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol Rev 165:167–180

    Article  PubMed  CAS  Google Scholar 

  34. Kurosaki T (1997) Molecular mechanisms in B cell antigen receptor signaling. Curr Opin Immunol 9:309–318

    Article  PubMed  CAS  Google Scholar 

  35. Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL (2000) Tyrosine kinase SYK: essential functions for immunoreceptor signal. Immunol Today 21:148–154

    Article  PubMed  CAS  Google Scholar 

  36. Jain RK, Padera TP (2003) Development, lymphatics make the break. Science 299:209–210

    Article  PubMed  CAS  Google Scholar 

  37. Cheng AM, Rowley B, Pao W, Hayday A, Bolen JB, Pawson T (1995) Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378:303–306

    Article  PubMed  CAS  Google Scholar 

  38. Turner M, Mee PJ, Costello PS, Williams O, Price AA, Duddy LP, Furlong MT, Geahlen RL, Tybulewicz VL (1995) Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378:298–302

    Article  PubMed  CAS  Google Scholar 

  39. Yanagi S, Inatome R, Ding J, Kitaguchi H, Tybulewicz VL, Yamamura H (2001) Syk expression in endothelial cells and their morphologic defects in embryonic Syk-deficient mice. Blood 98:2869–2871

    Article  PubMed  CAS  Google Scholar 

  40. Cao Z, Said N, Amin S, Wu HK, Bruce A, Garate M, Hsu DK, Kuwabara I, Liu FT, Panjwani N (2002) Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 277:42299–42305

    Article  PubMed  CAS  Google Scholar 

  41. Bresalier RS, Mazurek N, Sternberg LR, Byrd JC, Yunker CK, Nangia-Makker P, Raz A (1998) Metastasis of human colon cancer is altered by modifying expression of the beta-galactoside-binding protein galectin 3. Gastroenterology 115:287–296

    Article  PubMed  CAS  Google Scholar 

  42. Riss D, Jin L, Qian X, Bayliss J, Scheithauer BW, Young WF, Vidal S, Kovacs K, Raz A, Lloyd RV (2003) Differential expression of galectin-3 in pituitary tumors. Cancer Res 63:2251–2255

    PubMed  CAS  Google Scholar 

  43. Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, Raz A (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94:1854–1862

    PubMed  CAS  Google Scholar 

  44. Perez S, Vial E, van Dam H, Castellazzi M (2001) Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor-independent proliferation. Oncogene 20:1135–1141

    Article  PubMed  CAS  Google Scholar 

  45. Yan C, Wang H, Boyd DD (2002) ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. J Biol Chem 277:10804–10812

    Article  PubMed  CAS  Google Scholar 

  46. Ishiguro T, Nakajima M, Naito M, Muto T, Tsuruo T (1996) Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res 56:875–879

    PubMed  CAS  Google Scholar 

  47. Zippo A, De Robertis A, Bardelli M, Galvagni F, Oliviero S (2004) Identification of Flk-1 target genes in vasculogenesis: Pim-1 is for endothelial and mural cell differentiation in vitro. Blood 10:4536–4540

    Article  CAS  Google Scholar 

  48. Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA, Stracke ML (2001) Autotaxin (NPP-2), a metastasis-enhancing mitogen, is an angiogenic factor. Cancer Res 61:6938–6944

    PubMed  CAS  Google Scholar 

  49. Freeman KW, Gangula RD, Welm BE, Ozen M, Foster BA, Rosen JM, Ittmann M, Greenberg NM, Spencer DM (2003) Conditional activation of fibroblast growth factor receptor (FGFR) 1, but not FGFR2, in prostate cancer cells leads to increased osteopontin induction, extracellular signal-regulated kinase activation, and in vivo proliferation. Cancer Res 63:6237–6243

    PubMed  CAS  Google Scholar 

  50. Ohnami S, Matsumoto N, Nakano M, Aoki K, Nagasaki K, Sugimura T, Terada M, Yoshida T (1999) Identification of genes showing differential expression in antisense K-ras-transduced pancreatic cancer cells with suppressed tumorigenicity. Cancer Res 59:5565–5571

    PubMed  CAS  Google Scholar 

  51. Cheng J, Baumhueter S, Cacalano G, Caver-Moore K, Thibodeaux H, Thomas R, Broxmeyer HE, Cooper S, Hague N, Moore M, Jasky LA (1996) Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87:479–490

    PubMed  CAS  Google Scholar 

  52. Murga M, Yao L, Tosato G (2004) Derivation of endothelial cells from CD34- umbilical cord blood. Stem cells 22:385–395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for the Second Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan; and by the Program for promotion of fundamental Studies in Health Science of the Pharmaceutical and Medical Devices Agency (PMDA) of Japan. S. Furuhata and S. Ohnishi are awardees of a Research Resident Fellowship from the Foundation for Promotion of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumpei Ohnami.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Furuhata, S., Ando, K., Oki, M. et al. Gene expression profiles of endothelial progenitor cells by oligonucleotide microarray analysis. Mol Cell Biochem 298, 125–138 (2007). https://doi.org/10.1007/s11010-006-9359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9359-4

Keywords