Skip to main content
Log in

Development of antithrombotic miniribozymes that target peripheral tryptophan hydroxylase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Serotonin is not only a neurotransmitter in the central nervous system, but also a ubiquitous hormone in the periphery involved in vasoconstriction and platelet function. Tryptophan hydroxylase is the rate-limiting enzyme in serotonin biosynthesis. By gene targeting, we have shown that serotonin is synthesized independently by two different tryptophan hydroxylase isoenzymes in peripheral tissues and neurons and identified a neuronal tryptophan hydroxylase isoform. Mice deficient in peripheral tryptophan hydroxylase (TPH1) and serotonin exhibit a reduced risk of thrombosis and thromboembolism. Therefore, we designed several antitph1 hammerhead miniribozymes and tested their cleavage activity against short synthetic Tph1 RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of Tph1 mRNA that was dependent on substrate/miniribozyme ratio and duration of exposure to miniribozyme. Interestingly, we detected different in vitro cleavage rates after we had cloned the miniribozymes into tRNA expression constructs, and found one with a high cleavage rate. We also demonstrated that this active tRNA–miniribozyme chimera is capable of selectively cleaving native Tph1 mRNA in vivo, with concomitant downregulation of the serotonin biosynthesis. Therefore, this Tph1-specific miniribozyme may provide a novel and effective form of gene therapy that may be applicable to a variety of thrombotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veenstra-Vanderweele J, Anderson GM, Cook Jr EH (2000) Pharmacogenetics and the serotonin system: Initial studies and future directions Eur J Pharmacol 410: 165–181

    Article  PubMed  CAS  Google Scholar 

  2. Lesch KP, Zeng Y, Reif A et al. (2003) Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharm 480: 185–204

    Article  CAS  Google Scholar 

  3. Fitzpatrick PF (1999) Tetrahydrobiopterin-dependent amino acid hydroxylases. Annu Rev Biochem 68: 355–381

    Article  PubMed  CAS  Google Scholar 

  4. Fiorica-Howells E, Maroteaux L, Gershon MD (2000) Serotonin and the 5-HT2B receptor in the development of enteric neurons. J Neurosci 20: 294–305

    PubMed  CAS  Google Scholar 

  5. Walther DJ, Bader M (1999) Serotonin synthesis in murine embryonic stem cells. Mol Brain Res 68: 55–63

    Article  PubMed  CAS  Google Scholar 

  6. Finocchiaro LM, Arzt ES, Fernandez-Castelo S et al. (1988) Serotonin and melatonin synthesis in peripheral blood mononuclear cells: Stimulation by interferon-gamma as part of an immunomodulatory pathway. J Interferon Res 8: 705–716

    PubMed  CAS  Google Scholar 

  7. Weber LJ, Horita A (1965) A study of 5-hydroxytryptamine formation from l-tryptophan in the brain and other tissues. Biochem Pharmacol 14: 1141–1149

    Article  PubMed  CAS  Google Scholar 

  8. Champier J, Claustrat B, Besncon R et al. (1997) Evidence for tryptophan hydroxylase and hydroxy-indol-O-methyl-transferase mRNAs in human blood platelets. Life Sci 60: 2191–2197

    Article  PubMed  CAS  Google Scholar 

  9. Holland JM (1976) Serotonin deficiency and prolonged bleeding in beige mice. Proc Exp Biol Med 151: 32–39

    CAS  Google Scholar 

  10. Rapport MM, Green AA, Page IH (1948) Cristalline serotonin. Science 108: 329–330

    Article  CAS  PubMed  Google Scholar 

  11. Geba GP, Ptak W, Anderson GM et al. (1996) Delayed-type hypersensitivity in mast cell-deficient mice. Dependence on platelets for expression of contact sensitivity. J Immunol 157: 557–565

    PubMed  CAS  Google Scholar 

  12. Matsuda M, Imaoka T, Vomachka AJ et al. (2004) Serotonin regulates mammary gland development via an autocrine–paracrine loop. Dev Cell 6: 193–203

    Article  PubMed  CAS  Google Scholar 

  13. Gershon MD (1999) Review article: Roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther 13: 15–30

    Article  PubMed  Google Scholar 

  14. Harvey M, Shink E, Tremblay M et al. (2004) Support for the involvement of TPH2 gene in affective disorders. Mol Psychiatr 9: 980–981

    Article  CAS  Google Scholar 

  15. Walther DJ, Peter JU, Bashammakh S et al. (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 29: 76

    Article  Google Scholar 

  16. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66: 1673–1680

    Article  PubMed  CAS  Google Scholar 

  17. Walther DJ, Peter JU, Winter S et al. (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet a-granule release. Cell 115: 851–862

    Article  PubMed  CAS  Google Scholar 

  18. Höltje M, Winter S, Walther DJ et al. (2003) The vesicular monoamine content regulates VMAT2 activity through Galphaq in mouse platelets: Evidence for autoregulation of vesicular transmitter uptake. J Biol Chem 278: 15850–15858

    Article  PubMed  CAS  Google Scholar 

  19. Siess W (1989) Molecular mechanisms of platelet activation. Physiol Rev 69: 59–178

    Google Scholar 

  20. Harrison P, Cramer EM (1993) Platelet alpha-granules. Blood Rev 7: 52–62

    Article  PubMed  CAS  Google Scholar 

  21. Cohen RA, Shepherd JT, Vanhoutte PM (1983) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221: 273–274

    Article  PubMed  CAS  Google Scholar 

  22. Dale GL, Friese P, Batar P et al. (2002) Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 415: 175–179

    Article  PubMed  CAS  Google Scholar 

  23. Szasz R, Dale GL (2002) Thrombospondin and fibrinogen bind serotonin-derivatized proteins on COAT-platelets. Blood 100: 2827–2831

    Article  PubMed  CAS  Google Scholar 

  24. Denis C, Methia N, Frenette PS et al. (1998) A mouse model of severe von Willebrand disease: Defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 95: 9524–9529

    Article  PubMed  CAS  Google Scholar 

  25. Ni H, Denis CV, Subbarao S et al. (2000) Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 106: 385–392

    Article  PubMed  CAS  Google Scholar 

  26. Mayne EE, Bridges JM, Weaver JA (1970) Platelet adhesiveness, plasma fibrinogen and factor 8 levels in diabetes mellitus. Diabetologia 6: 436–440

    Article  PubMed  CAS  Google Scholar 

  27. Winocour PD, Lopes-Virella M, Laimins M et al. (1985) Effect of insulin treatment in streptozocin-induced diabetic rats on in vitro platelet function and plasma von Willebrand factor activity and factor VIII-related antigen. J Lab Clin Med 106: 319–325

    PubMed  CAS  Google Scholar 

  28. Blann AD, Amiral J, McCollum CN (1996) Circulating endothelial cell/leucocyte adhesion molecules in ischaemic heart disease. Br J Haematol 95: 263–265

    Article  PubMed  CAS  Google Scholar 

  29. Fujiwara Y, Tagami S, Kawakami Y (1998) Circulating thrombomodulin and hematological alterations in type 2 diabetic patients with retinopathy. J Atheroscler Thromb 5: 21–28

    PubMed  CAS  Google Scholar 

  30. Herschlag D (1991) Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: More isn’t always better. Proc Natl Acad Sci USA 88: 6921–6925

    Article  PubMed  CAS  Google Scholar 

  31. Bertrand E, Pictet R, Grange T (1994) Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res 22: 293–300

    Article  PubMed  CAS  Google Scholar 

  32. Conaty J, Hendry P, Lockett T (1999) Selected classes of minimized hammerhead ribozyme have very high cleavage rates at low Mg2+ concentration. Nucleic Acids Res 27: 2400–2407

    Article  PubMed  CAS  Google Scholar 

  33. Thompson JD, Ayers DF, Malmstrom TA et al. (1995) Improved accumulation and activity of ribozymes expressed from a tRNA-based polymerase III promoter. Nucleic Acids Res 12: 2259–2268

    Article  Google Scholar 

  34. Walther DJ, Peter JU, Bader M (2002) 7-Hydroxytryptophan, a novel, specific, cytotoxic agent for carcinoids and other serotonin-producing tumors. Cancer 94: 3135–3140

    Article  PubMed  CAS  Google Scholar 

  35. Brodsky LI, Ivanov VV, Kalaydzidis YL et al. (1995) GeneBee-NET: Internet-based server for analyzing biopolymers structure. Biochemistry 60: 923–928

    Google Scholar 

  36. Sun LQ, Wang L, Gerlach WL et al. (1995) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res 23: 2909–2913

    Article  PubMed  CAS  Google Scholar 

  37. Kasai Y, Shizuku H et al. (2002) Measurements of weak interactions between truncated substrates and a hammerhead ribozyme by competitive kinetic analyses: Implications for the design of new and efficient ribozymes with high sequence specificity. Nucleic Acids Res 30: 2383–2389

    Article  PubMed  CAS  Google Scholar 

  38. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415

    Article  PubMed  CAS  Google Scholar 

  39. Hertel KJ, Herschlag D, Uhlenbeck OC (1994) A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33: 3374–3385

    Article  PubMed  CAS  Google Scholar 

  40. Zhou JM, Zhou DM, Takagi Y et al. (2002) Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme. Nucleic Acids Res 30: 2374–2382

    Article  PubMed  CAS  Google Scholar 

  41. Stoll J, Kozak CA, Goldman D (1990) Characterization and chromosomal mapping of a cDNA encoding tryptophan hydroxylase from a mouse mastocytoma cell line. Genomics 7: 88–96

    Article  PubMed  CAS  Google Scholar 

  42. Kijima H, Ishida H, Ohkawa T et al. (1995) Therapeutic applications of ribozymes. Pharmacol Ther 68: 247–267

    Article  PubMed  CAS  Google Scholar 

  43. Irie A, Bouffard DY, Scanlon KJ (1997) Ribozyme-mediated cancer gene therapy. Int J Urol 4: 329–337

    PubMed  CAS  Google Scholar 

  44. Du Q, Thonberg H, Wang J et al. (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33: 1671–1677

    Article  PubMed  CAS  Google Scholar 

  45. Jackson AL, Linsley PS (2004) Noise amidst the silence: Off-target effects of siRNAs? Trends Genet 20: 521–524

    Article  PubMed  CAS  Google Scholar 

  46. Lin X, Ruan X, Anderson MG et al. (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33: 4527–4535

    Article  PubMed  CAS  Google Scholar 

  47. Kobayashi H, Dorai T, Holland JF et al. (1994) Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res 54: 1271–1275

    PubMed  CAS  Google Scholar 

  48. Yokoyama Y, Morishita S, Takahashi Y et al. (1997) Modulation of c-fms protooncogene in an ovarian carcinoma cell line by a hammerhead ribozyme. Br J Cancer 76: 977–982

    PubMed  CAS  Google Scholar 

  49. Hendry P, McCall MJ, Stewart TS, Lockett TJ: Redesigned and chemically modified hammerhead ribozymes with improved activity and serum stability. BMC Chem Biol 4: 1, 2004

    Google Scholar 

  50. Flatman PW (1991) Mechanisms of magnesium transport. Annu Rev Physiol 53: 259–271

    Article  PubMed  CAS  Google Scholar 

  51. Mistry SJ, Benham CJ, Atweh GF (2001) Development of ribozymes that target stathmin, a major regulator of the mitotic spindle. Antisense Nucleic Acid Drug Dev 11: 41–49

    Article  PubMed  CAS  Google Scholar 

  52. Pyle AM, Green JB (1995) RNA folding. Curr Opin Struct Biol 5: 303–310

    Article  PubMed  CAS  Google Scholar 

  53. Bertrand E, Castanotto D, Zhou C et al. (1997) The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3: 75–88

    PubMed  CAS  Google Scholar 

  54. Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74: 199–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank G. Böttger for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego J. Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, JU., Alenina, N., Bader, M. et al. Development of antithrombotic miniribozymes that target peripheral tryptophan hydroxylase. Mol Cell Biochem 295, 205–215 (2007). https://doi.org/10.1007/s11010-006-9290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9290-8

Keywords

Navigation