Skip to main content
Log in

Mg2+ release coupled to Ca2+ uptake: A novel Ca2+ accumulation mechanism in rat liver

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

TPP+ :

tetraphenylphosphonium

SCN :

sodium thiocyanate

aLPM:

apical liver plasma membranes

AAS:

atomic absorption spectrophotometry

FCCP:

protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone

References

  1. Flatman PW: 1984 Magnesium transport across cell membranes J Membr Biol 80: 1-14

    Article  PubMed  CAS  Google Scholar 

  2. Maguire ME: 1988 Magnesium and cell proliferation Ann NY Acad Sci 531: 201-217

    Article  Google Scholar 

  3. Grubbs RD, Maguire ME: 1987 Magnesium as a regulatory cation: criteria and evaluation Magnesium 6: 113-124

    PubMed  CAS  Google Scholar 

  4. Walker GM: 1986 Magnesium and cell cycle control: an update Magnesium 5: 9-23

    PubMed  CAS  Google Scholar 

  5. Romani A, Scarpa A: 1992 Regulation of cell magnesium Arch Biochem Biophys 298: 1-12

    Article  PubMed  CAS  Google Scholar 

  6. Romani A, Scarpa: 1990 A. Hormonal control of Mg2+ in the heart Nature 346: 841–844

    Article  PubMed  CAS  Google Scholar 

  7. Romani A, Dowell EA, Scarpa A: 1991 Cyclic AMP-induced Mg2+ release from rat liver hepatocytes, permeabilized hepatocytes, and isolated mitochondria J Biol Chem 266: 24376-24384

    PubMed  CAS  Google Scholar 

  8. Romani A, Marfella C, Scarpa A: 1993 Hormonal stimulation of Mg2+ uptake in hepatocytes J Biol Chem 268: 15489-15495

    PubMed  CAS  Google Scholar 

  9. Romani A, Marfella C, Scarpa A: 1993 Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes Circ Res 72: 1139-1148

    PubMed  CAS  Google Scholar 

  10. Gunther T, Vormann J: 1989 Characterization of Mg2+ efflux from human, rat and chicken erythrocytes Febs Lett 250: 633–637

    Article  PubMed  CAS  Google Scholar 

  11. Cefaratti C, Romani A, Scarpa A: 1998 Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver Am J Physiol 275: C995–C1008

    PubMed  CAS  Google Scholar 

  12. Cefaratti C, Scarpa A: 2000 Differential localization and operation of distinct Mg2+ transporters in apical and basolateral sides of rat liver plasma membrane J Biol Chem 275: 3772–3780

    Article  PubMed  CAS  Google Scholar 

  13. Flatman P: 1991 Mechanisms of Mg2+ transport Annu Rev Physiol 53:259–271

    Article  PubMed  CAS  Google Scholar 

  14. Gunther T: 1993 Mechanisms and regulation of Mg2+ efflux and Mg2+ influx Min Electrol Metab 19: 259 -265

    CAS  Google Scholar 

  15. Feray JC, Garay R: 1987 A one-to-one Mg2+: Mn2+ exchange in rat erythrocytes J Biol Chem 262: 5763-5768

    PubMed  CAS  Google Scholar 

  16. Seglan PO: 1976 Preparation of isolated rat liver cells Methods Cell Biol 13: 29–83

    Article  Google Scholar 

  17. Fagan T, Scarpa A: 2002 Hormone-stimulated Mg2+ accumulation into rat hepatocytes: a pathway for rapid Mg2+ and Ca2+ redistribution Archives Biochem Biophys 401: 277–282

    Article  CAS  Google Scholar 

  18. Fagan T, Romani A: 2001 alpha(1)-Adrenoceptor-induced Mg2+ extrusion from rat hepatocytes occurs via Na+-dependent transport mechanism Am J Physiol Gastrointes Liver Physiol 280: G1145–G1156

    CAS  Google Scholar 

  19. Bradford MM: 1976 A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254

    Article  PubMed  CAS  Google Scholar 

  20. Shiffman MJ, Sugerman HJ, Kellum JM, Moore EW: 1992 Calcium in human gallbladder bile J Lab Clin Med 120:875–884

    PubMed  CAS  Google Scholar 

  21. Moore EW: 1990 Biliary calcium and gallstone formation Hepatology 12:206S–214S

    PubMed  CAS  Google Scholar 

  22. Webling DD, Holdsworth ES: 1966 Bile salts and calcium absorption. Biochem J 100:652–660

    PubMed  CAS  Google Scholar 

  23. Sun AQ, Ananthanarayanan M, Soroka CJ, Thevananther S, Shneider BL, Suchy FJ: 1998 Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells Amer J Physiol 275:G1045–1055

    PubMed  CAS  Google Scholar 

  24. Ahrendt SA, Ahrendt GM, Pitt HA, Moore EW, Lillemoe KD: 1995 Hypercalcemia decreases bile flow and increases biliary calcium in the praire dog. Surgery 117:435–442

    Article  PubMed  CAS  Google Scholar 

  25. Weinman SA: 1997 Electrogenicity of Na+-coupled bile acid transporters Yale J Biol Med 4:331–340

    Google Scholar 

  26. Meyer G, Guizzardi F, Rodighiero S, Manfredi R, Saino S, Sironi C, Garavaglia ML, Bazzini C, Botta G, Portincasa P, Calamita G, Paulmichl M: 2005 Ion transport across the gallbladder epithelium Curr Drug Targets Immune Endocr Metabol Disord 2:143–151

    Article  Google Scholar 

Download references

Acknowledgment

I thank Drs. Andrea Romani and Theresa Alexander for valuable discussion. This work was supported by National Institutes of Health Grant HL 18708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cefaratti.

Additional information

This work was supported by National Institutes of Health Grant HL 18708.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cefaratti, C. Mg2+ release coupled to Ca2+ uptake: A novel Ca2+ accumulation mechanism in rat liver. Mol Cell Biochem 295, 241–247 (2007). https://doi.org/10.1007/s11010-006-9274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9274-8

Keywords

Navigation