Skip to main content
Log in

The roles of translation initiation regulation in ultraviolet light-induced apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ultraviolet light (UV) inhibits translation initiation through activation of kinases that phosphorylate the α-subunit of eukaryotic initiation factor 2 (eIF2α). Two eIF2α kinases, PERK and GCN2, are known to phosphorylate the Serine-51 of eIF2α in response to UV-irradiation. In this report, we present evidence that phosphorylation of eIF2α plays a role in UV-induced apoptosis. Our data show that wild-type mouse embryo fibroblasts (MEFs/s) are less sensitive to UV-induced apoptosis than MEFA/A cells in which the phosphorylation site, Ser51, of eIF2α is replaced with a non-phosphorylatable Ala (Ser51Ala). PARP expression in MEFA/A cells is reduced without being cleaved after UV-irradiation. In contrast, PARP is cleaved without a significant decrease in parental PARP in MEFS/S cells after UV-irradiation. Our data also show that MEFGCN2−/− cells, in which GCN2 is knocked out, are more sensitive to UV-irradiation, agreeing with the observation from MEFA/A cells. However, MEFPERK−/− cells, in which PERK is knocked out, are less sensitive to UV-irradiation. In addition, MCF-7-PERKΔC cells, which are stably transfected with a kinase domain deleted mutant of PERK (PERKΔC), are more resistant to UV-induced apoptosis than parental MCF-7 cells. Overexpression of wild-type PERK sensitizes MCF-7 cells to UV-induced apoptosis without directly inducing cell death. These results suggest that the level of eIF2α phosphorylation impacts PARP expression upon UV-irradiation. The eIF2α kinases may mediate UV-induced apoptosis via an eIF2α dependent or independent signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UVC:

ultraviolet light, 254 nm

eIF2α:

the α-subunit of eukaryotic initiation factor 2

PKR dsRNA:

activated protein kinase

PERK:

PKR-like ER kinase

DsRNA:

double-stranded RNA

ER:

endoplasmic reticulum

MEF:

mouse embryo fibroblasts

MEFS/S :

MEF with wild-type eIF2α

MEFA/A :

MEF with a Ser51Ala mutation at the phosphorylation site in eIF2α

PERKΔC:

kinase domain deleted PERK (residues 1–536)

NFκB:

nuclear factor kappa B

IκB:

inhibitor of NFκB

PARP:

poly(ADP-ribose) polymerase

References

  1. Gil J, Alcami J, Esteban M: Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Mol Cell Biol 19: 4653–4663, 1999

    PubMed  CAS  Google Scholar 

  2. Balachandran S, Kim CN, Yeh WC, Mak TW, Bhalla K, Barber GN: Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. Embo J 17: 6888–6902, 1998

    Article  PubMed  CAS  Google Scholar 

  3. Der SD, Yang YL, Weissmann C, Williams BR: A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc Natl Acad Sci U S A 94: 3279–3283, 1997

    Article  PubMed  CAS  Google Scholar 

  4. Srivastava SP, Kumar KU, Kaufman RJ: Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA- dependent protein kinase. J Biol Chem 273: 2416–2423, 1998

    Article  PubMed  CAS  Google Scholar 

  5. Harding HP, Zhang Y, Ron D: Protein translation and folding are coupled by an endoplasmic-reticulum- resident kinase [published erratum appears in Nature 1999 Mar 4;398(6722):90] [see comments]. Nature 397: 271–274, 1999

    Article  PubMed  CAS  Google Scholar 

  6. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D: Dynamic interaction of BiP and ER stress transducers in the unfolded- protein response. Nat Cell Biol 2: 326–332, 2000

    Article  PubMed  CAS  Google Scholar 

  7. Sood R, Porter AC, Ma K, Quilliam LA, Wek RC: Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem J 346 Pt 2: 281–293, 2000

    Article  Google Scholar 

  8. Kumar R, Krause GS, Yoshida H, Mori K, DeGracia DJ: Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 23: 462–471, 2003

    Article  PubMed  CAS  Google Scholar 

  9. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D: Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7: 1153–1163, 2001

    Article  PubMed  CAS  Google Scholar 

  10. Kaufman RJ: The Double-stranded RNA-activated Protein Kinase PKR. In: N Sonenberg, JWB Hershey and MB Mathews (eds). Translational Control of Gene Expression, CSHL Press, Cold Spring Harbor, New York, 2000, pp 503–528

    Google Scholar 

  11. Sood R, Porter AC, Olsen D, Cavener DR, Wek RC: A Mammalian Homologue of GCN2 Protein Kinase Important for Translational Control by Phosphorylation of Eukaryotic Initiation Factor-2alpha. Genetics 154: 787–801, 2000

    PubMed  CAS  Google Scholar 

  12. Ranu RS: Regulation of protein synthesis in rabbit reticulocyte lysates: the hemeregulated protein kinase (HRI) and double stranded RNA induced protein kinase (dRI) phosphorylate the same site(s) on initiation factor eIF-2. Biochem Biophys Res Commun 91: 1437–1444, 1979

    Article  PubMed  CAS  Google Scholar 

  13. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D: Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5: 897–904, 2000

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez JM, Bode B, Koromilas A, Diehl JA, Krukovets I, Snider MD, Hatzoglou M: Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem: 277:11780–11787, 2002

    Article  PubMed  CAS  Google Scholar 

  15. Wu S, Hu Y, Wang JL, Chatterjee M, Shi Y, Kaufman RJ: Ultraviolet light inhibits translation through activation of the unfolded protein response kinase PERK in the lumen of the endoplasmic reticulum. J Biol Chem 277: 18077–18083, 2002

    Article  PubMed  CAS  Google Scholar 

  16. Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ: Ultraviolet Light Activates NFκB through Translational Inhibition of IκBα Synthesis. J Biol Chem 279: 34898–34902, 2004

    Article  PubMed  CAS  Google Scholar 

  17. Kucharczak J, Simmons MJ, Fan Y, Gelinas C: To be, or not to be: NF-kappaB is the answer — role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22: 8961–8982, 2003

    Article  PubMed  CAS  Google Scholar 

  18. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC: Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23: 5651–5663, 2003

    Article  PubMed  CAS  Google Scholar 

  19. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ: Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7: 1165–1176, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Wu S, Kaufman RJ: A model for the double-stranded RNA (dsRNA)-dependent dimerization and activation of the dsRNA-activated protein kinase PKR. J Biol Chem 272: 1291–1296, 1997

    Article  PubMed  CAS  Google Scholar 

  21. Movsesyan VA, Yakovlev AG, Dabaghyan EA, Stoica BA, Faden AI: Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochem Biophys Res Commun 299: 201–207, 2002

    Article  PubMed  CAS  Google Scholar 

  22. Rehemtulla A, Hamilton CA, Chinnaiyan AM, Dixit VM: Ultraviolet radiation-induced apoptosis is mediated by activation of CD- 95 (Fas/APO-1). J Biol Chem 272: 25783–25786, 1997

    Article  PubMed  CAS  Google Scholar 

  23. Aragane Y KD, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T: Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140: 171–182, 1998

    Article  PubMed  CAS  Google Scholar 

  24. Wajant H: The Fas signaling pathway: more than a paradigm. Science 296: 1635–1636, 2002

    Article  PubMed  CAS  Google Scholar 

  25. Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, Kaufman RJ, Ron D, Sonenberg N: Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12: 1279–1286, 2002

    Article  PubMed  CAS  Google Scholar 

  26. Pain VM: Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236: 747–771, 1996

    Article  PubMed  CAS  Google Scholar 

  27. Price NT, Welsh GI, Proud CG: Phosphorylation of only serine-51 in protein synthesis initiation factor-2 is associated with inhibition of peptide-chain initiation in reticulocyte lysates. Biochem Biophys Res Commun 176: 993–999, 1991

    Article  PubMed  CAS  Google Scholar 

  28. Jiang HY, Wek RC: GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J 385: 371–380, 2005

    Article  PubMed  CAS  Google Scholar 

  29. DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC: Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 22: 127–141, 2002

    Article  PubMed  CAS  Google Scholar 

  30. Jiang HY, Wek RC: Phosphorylation of the α-Subunit of the Eukaryotic Initiation Factor-2 (eIF2α) Reduces Protein Synthesis and Enhances Apoptosis in Response to Proteasome Inhibition. J Biol Chem 280: 14189–14202, 2005

    Article  PubMed  CAS  Google Scholar 

  31. Oyadomari S, Araki E, Mori M: Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7: 335–345, 2002

    Article  PubMed  CAS  Google Scholar 

  32. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23: 7198–7209, 2003

    Article  PubMed  CAS  Google Scholar 

  33. Marbach I, Licht R, Frohnmeyer H, Engelberg D: Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276: 16944-16951, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D: Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24: 10161–10168, 2004

    Article  PubMed  CAS  Google Scholar 

  35. Yun SJ, Lee DJ, Kim MO, Jung B, Kim SO, Sohn NW, Lee EH: Reduction but not cleavage of poly(ADP-ribose) polymerase during stress-mediated cell death in the rat hippocampus. Neuroreport 14: 935–939, 2003

    Article  PubMed  CAS  Google Scholar 

  36. Kim JW, Won J, Sohn S, Joe CO: DNA-binding activity of the N-terminal cleavage product of poly(ADP-ribose) polymerase is required for UV mediated apoptosis. J Cell Sci 113 (Pt 6): 955–961, 2000

    Google Scholar 

  37. Meli E, Pangallo M, Picca R, Baronti R, Moroni F, Pellegrini-Giampietro DE: Differential role of poly(ADP-ribose) polymerase-1in apoptotic and necrotic neuronal death induced by mild or intense NMDA exposure in vitro. Mol Cell Neurosci 25: 172–180, 2004

    Article  PubMed  CAS  Google Scholar 

  38. Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DK, Molineaux SM, Yamin TT, Yu VL, Nicholson DW: Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 270: 15870–15876, 1995

    Article  PubMed  CAS  Google Scholar 

  39. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM: Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809, 1995

    Article  PubMed  CAS  Google Scholar 

  40. Le Rhun Y, Kirkland JB, Shah GM: Cellular responses to DNA damage in the absence of Poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 245: 1–10, 1998

    Article  PubMed  Google Scholar 

  41. Donze O, Dostie J, Sonenberg N: Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 256: 322–329, 1999

    Article  PubMed  CAS  Google Scholar 

  42. Takizawa T, Tatematsu C, Nakanishi Y: Double-stranded RNA-activated protein kinase (PKR) fused to green fluorescent protein induces apoptosis of human embryonic kidney cells: possible role in the Fas signaling pathway. J Biochem (Tokyo) 125: 391–398, 1999

    CAS  Google Scholar 

  43. Brewer JW, Diehl JA: PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A 97: 12625–12630, 2000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, S.H., Parker, T.A., George, K.S. et al. The roles of translation initiation regulation in ultraviolet light-induced apoptosis. Mol Cell Biochem 293, 173–181 (2006). https://doi.org/10.1007/s11010-006-9239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9239-y

Keywords

Navigation