Skip to main content

Advertisement

Log in

Use of recombinant calpain-2 siRNA adenovirus to assess calpain-2 modulation of lung endothelial cell migration and proliferation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we developed an adenoviral vector harboring calpain-2 siRNA expression unit in which sense and anti-sense strands composing the siRNA duplex were connected by a loop and transcribed into a siRNA in porcine pulmonary artery endothelial cells (PAEC). We screened one efficient adenoviral vector Ad/si-m187 and found that Ad/si-m187 successfully exerted a gene knockdown effect on calpain-2 mRNA transcription and protein expression levels. The protein content of calpain-2 was reduced by 30%–80% in PAEC infected with Ad/si-m187 in comparison to a control adenoviral vector Ad/si-luc. The mRNA levels of calpain-2 were measured by real-time PCR and were decreased by 60%–100% and in a dose dependent manner. In correspondence to silencing calpain-2 gene expression, calpain-2 activity was decreased significantly. We further evaluated the role of calpain-2 in endothelial cell migration and proliferation. PAEC infected with Ad/si-m187 displayed impaired migration and cell proliferation in comparison to cells infected with control adenoviral vector (Ad/si-luc). These results indicate that adenoviral vector harboring calpain-2 siRNA expression unit is a valuable tool to study the biology of calpains and that calpain-2 plays an important role in lung endothelial cell migration and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sorimachi H, Suzuki K: The structure of calpain. J Biochem (Tokyo) 129: 653–664, 2001

    CAS  Google Scholar 

  2. Suzuki K, Hata S, Kawabata Y, Sorimachi H: Structure, activation, and biology of calpain. Diabetes 53 (Suppl 1): S12–S18, 2004

    Google Scholar 

  3. Zhang J, Patel JM, Block ER: Hypoxia-specific upregulation of calpain activity and gene expression in pulmonary artery endothelial cells. Am J Physiol 275: L461–L468, 1998

  4. Carragher NO, Frame MC: Calpain: A role in cell transformation and migration. Int J Biochem Cell Biol 34: 1539–1543, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Branca D: Calpain-related diseases. Biochem Biophys Res Commun 322: 1098–1104, 2004

    Article  PubMed  CAS  Google Scholar 

  6. Shiraha H, Glading A, Chou J, Jia Z, Wells A: Activation of m-calpain (calpain II) by epidermal growth factor is limited by protein kinase A phosphorylation of m-calpain. Mol Cell Biol 22: 2716–2727, 2002

    Article  PubMed  CAS  Google Scholar 

  7. Goll DE, Thompson VF, Li H, Wei W, Cong J: The calpain system. Physiol Rev 83: 731–801, 2003

    PubMed  CAS  Google Scholar 

  8. Huang Y, Wang KK: The calpain family and human disease. Trends Mol Med 7: 355–362, 2001

    Article  PubMed  CAS  Google Scholar 

  9. Franco S, Perrin B, Huttenlocher A: Isoform specific function of calpain 2 in regulating membrane protrusion. Exp Cell Res 299: 179–187, 2004

    Article  PubMed  CAS  Google Scholar 

  10. Glading A, Lauffenburger DA, Wells A: Cutting to the chase: Calpain proteases in cell motility. Trends Cell Biol 12: 46–54, 2002

    Article  PubMed  CAS  Google Scholar 

  11. Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF: Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272: 32719–32722, 1997

    Article  PubMed  CAS  Google Scholar 

  12. Janossy J, Ubezio P, Apati A, Magocsi M, Tompa P, Friedrich P: Calpain as a multi-site regulator of cell cycle. Biochem Pharmacol 67: 1513–1521, 2004

    Article  PubMed  CAS  Google Scholar 

  13. Sato K, Kawashima S: Calpain function in the modulation of signal transduction molecules. Biol Chem 382: 743–751, 2001

    Article  PubMed  CAS  Google Scholar 

  14. Donkor IO: A survey of calpain inhibitors. Curr Med Chem 7: 1171–1188, 2000

    PubMed  CAS  Google Scholar 

  15. Shen C, Buck AK, Liu X, Winkler M, Reske SN: Gene silencing by adenovirus-delivered siRNA. FEBS Lett 539: 111–114, 2003

    Article  PubMed  CAS  Google Scholar 

  16. Edgell CJ, Curiel DT, Hu PC, Marr HS: Efficient gene transfer to human endothelial cells using DNA complexed to adenovirus particles. Biotechniques 25: 264–2, 1998

    PubMed  CAS  Google Scholar 

  17. Perrin BJ, Amann KJ, Huttenlocher A: Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol Biol Cell 17: 239–250, 2006

    Article  PubMed  CAS  Google Scholar 

  18. Gratton JP, Yu J, Griffith JW, Babbitt RW, Scotland RS, Hickey R, Giordano FJ, Sessa WC: Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med 9: 357–362, 2003

    Article  PubMed  CAS  Google Scholar 

  19. Su Y, Block ER: Acute hypoxia increases intracellular L-arginine content in cultured porcine pulmonary artery endothelial cells. J Cell Physiol 167: 349–353, 1996

    Article  PubMed  CAS  Google Scholar 

  20. Su Y, Cao W, Han Z, Block ER: Cigarette smoke extract inhibits angiogenesis of pulmonary artery endothelial cells: The role of calpain. Am J Physiol Lung Cell Mol Physiol 287: L794–L800, 2004

    Article  PubMed  CAS  Google Scholar 

  21. Newcomb JK, Pike BR, Zhao X, Hayes RL: Concurrent assessment of calpain and caspase-3 activity by means of western blots of protease-specific spectrin breakdown products. Methods Mol Biol 144: 219–223, 2000

    PubMed  CAS  Google Scholar 

  22. Aepfelbacher M, Essler M, Huber E, Sugai M, Weber PC: Bacterial toxins block endothelial wound repair. Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells. Arterioscler Thromb Vasc Biol 17: 1623–1629, 1997

    PubMed  CAS  Google Scholar 

  23. Hammond SM, Caudy AA, Hannon GJ: Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2: 110–119, 2001

    Article  PubMed  CAS  Google Scholar 

  24. Arts GJ, Langemeijer E, Tissingh R, Ma L, Pavliska H, Dokic K, Dooijes R, Mesic E, Clasen R, Michiels F, van der SJ, Lambrecht M, Herman S, Brys R, Thys K, Hoffmann M, Tomme P, van Es H: Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res 13: 2325–2332, 2003

    Article  PubMed  CAS  Google Scholar 

  25. Bain JR, Schisler JC, Takeuchi K, Newgard CB, Becker TC: An adenovirus vector for efficient RNA interference-mediated suppression of target genes in insulinoma cells and pancreatic islets of langerhans. Diabetes 53: 2190–2194, 2004

    PubMed  CAS  Google Scholar 

  26. Achenbach TV, Brunner B, Heermeier K: Oligonucleotide-based knockdown technologies: Antisense versus RNA interference. Chembiochem 4: 928–935, 2003

    Article  PubMed  CAS  Google Scholar 

  27. Vickers TA, Koo S, Bennett CF, Crooke ST, Dean NM, Baker BF: Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278: 7108–7118, 2003

    CAS  Google Scholar 

  28. Bilanges B, Stokoe D: Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi. Biochem J 388: 573–583, 2005

    Article  PubMed  CAS  Google Scholar 

  29. Zhang W, Lane RD, Mellgren RL: The major calpain isozymes are long-lived proteins. Design of an antisense strategy for calpain depletion in cultured cells. J Biol Chem 271: 18825–18830, 1996

    Article  PubMed  CAS  Google Scholar 

  30. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T: Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20: 6877–6888, 2001

    Article  PubMed  CAS  Google Scholar 

  31. Hutvagner G, Zamore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056–2060, 2002

    Article  PubMed  CAS  Google Scholar 

  32. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS: Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21: 635–637, 2003

    Article  PubMed  CAS  Google Scholar 

  33. Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW: Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 100: 6347–6352, 2003

    Google Scholar 

  34. Hamada M, Ohtsuka T, Kawaida R, Koizumi M, Morita K, Furukawa H, Imanishi T, Miyagishi M, Taira K: Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev 12: 301–309, 2002

    Article  PubMed  CAS  Google Scholar 

  35. Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116: 281–297, 2004

    Article  PubMed  CAS  Google Scholar 

  36. Perrin BJ, Huttenlocher A: Calpain. Int J Biochem Cell Biol 34: 722–725, 2002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchao Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, K., Su, Y. & Block, E.R. Use of recombinant calpain-2 siRNA adenovirus to assess calpain-2 modulation of lung endothelial cell migration and proliferation. Mol Cell Biochem 292, 69–78 (2006). https://doi.org/10.1007/s11010-006-9219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9219-2

Keywords

Navigation