Skip to main content
Log in

IL-6 signaling via the STAT3/SOCS3 pathway: Functional Analysis of the Conserved STAT3 N-domain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The conserved N-domain of the STAT proteins has been implicated in several activities crucial to cytokine signaling including receptor recruitment and STAT activation, cooperative DNA binding and STAT-dependent gene expression. We evaluated the role of the STAT3 N-domain in the IL-6 signal transduction pathway leading to Socs3 gene expression, an essential mechanism that controls the quality and magnitude of IL-6-dependent transcriptional responses. Based on the model for STAT N-domain function in cooperative gene expression and the presence of tandem STAT binding motifs in the murine Socs3 promoter, we anticipated that stabilizing interactions between adjacent STAT3 dimers via N-domain sequences might be essential for Socs3 gene expression. This was underscored by the tight conservation in the location and sequence of the tandem STAT binding sites between the murine and human Socs3 promoters. Using reconstitution into Stat3−/− mouse embryonic fibroblasts (Stat3−/− MEFs), we find that a STAT3 N-domain deletion mutant (Δ 133STAT3) is activated by tyrosine phosphorylation in response to IL-6 and then undergoes dephosphorylation with kinetics similar to full-length STAT3. These results highlight important differences compared to other STATs where the N-domain has been shown to mediate activation (STAT4) or dephosphorylation (STAT1). STAT3 binds predominantly to a single STAT consensus site in the Socs3 promoter, despite the presence of an adjacent STAT motif. Significantly, Δ 133STAT3 stimulates expression of the endogenous Socs3 gene in Stat3−/− MEFs upon IL-6 treatment with an activity similar to reconstituted STAT3, demonstrating that the N-domain is dispensable for Socs3 gene expression. We propose that the Socs3 gene in its chromosomal context is activated by the IL-6/STAT3 pathway independent of STAT3 N-domain sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S: Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10: 39–49, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ: Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13: 2604–2616, 1999

    Article  PubMed  CAS  Google Scholar 

  3. Alzoni T, Maritano D, Gorgoni B, Rizzuto G, Libert C, Poli V: Essential role of STAT3 in the control of the acute–phase response as revealed by inducible gene inactivation in the liver. Mol Cell Biol 21: 1621–1632, 2001

    Article  PubMed  Google Scholar 

  4. Niwa H, Burdon T, Chambers I, Smith A: Self–renewal of pluripotent embryonic stem cells is mediated via activation of Stat3. Genes Dev. 12: 2048–2060, 1998

    PubMed  CAS  Google Scholar 

  5. Darnell Jr JE: STATs and gene regulation. Science 277: 1630–1635, 1997

    Article  PubMed  CAS  Google Scholar 

  6. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW: Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285: 1–24, 2002

    Article  PubMed  CAS  Google Scholar 

  7. Bhattacharya S, Schindler C: Regulation of Stat3 nuclear export. J Clin Invest 111: 553–559, 2003

    Article  PubMed  CAS  Google Scholar 

  8. ten Hoeve J, de Jesus Ibarra–Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22: 5662–5668, 2002

    Article  PubMed  CAS  Google Scholar 

  9. Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K, DePinho RA, Levy DE: STAT3 is a negative regulator of granulopoiesis but is not required for G–CSF–dependent differentiation. Immunity 17: 63–72, 2002

    Article  PubMed  CAS  Google Scholar 

  10. Welte T, Zhang SS, Wang T, Zhang Z, Hesslein DG, Yin Z, Kano A, Iwamoto Y, Li E, Craft JE, Bothwell AL, Fikrig E, Koni PA, Flavell RA, Fu XY: STAT3 deletion during hematopoiesis causes Crohn's disease–like pathogenesis and lethality: A critical role of STAT3 in innate immunity. Proc Natl Acad Sci USA 100: 1879–1884, 2003

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, Miura H, Yoshikawa K, Akira S, Takeda J: Keratinocyte–specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J. 18: 4657–4668, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Cheng F, Wang H–W, Cuenca A, Huang M, Ghansah T, Brayer J, Kerr WG, Takeda K, Akira S, Schoenberger SP, Yu H, Jove R, Sotomayer EM: A critical role for STAT3 signaling in immune tolerance. Immunity 19: 425–436, 2003

    Article  PubMed  CAS  Google Scholar 

  13. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr: Stat3 as an oncogene. Cell 98: 295–303, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Benekli M, Baer MR, Baumann H, Wetzler M: Signal transducer and activator of transcription proteins in leukemias. Blood 101: 2940–2954, 2003

    Article  PubMed  CAS  Google Scholar 

  15. Frank DA: STAT signaling in the pathogenesis and treatment of cancer. Mol Med 5: 432–456, 1999

    PubMed  CAS  Google Scholar 

  16. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr: Stat3 activation is required for cellular transformation by v–src. Mol Cell Biol 18: 2553–2558, 1998

    PubMed  CAS  Google Scholar 

  17. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R: Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 18: 2545–2552, 1998

    PubMed  CAS  Google Scholar 

  18. Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E, Laudano A, Sebti S, Hamilton AD, Jove R: Phosphotyrosyl peptides block Stat3–mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 276: 45443–45455, 2001

    Article  PubMed  CAS  Google Scholar 

  19. Ren Z, Cabell LA, Schaefer TS, McMurray JS: Identification of a high–affinity phosphopeptide inhibitor of Stat3. Bioorg Med Chem Lett 13: 633–636, 2003

    Article  PubMed  CAS  Google Scholar 

  20. Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, Robbins PD, Gadiparthi S, Burke NA, Watkins SF and Grandis JR: Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci USA 100: 4138–4143, 2003

    Article  PubMed  CAS  ADS  Google Scholar 

  21. Shouda T, Yoshida T, Hanada T, Wakioka T, Oishi M, Miyoshi K, Komiya S, Kosai K, Hanakawa Y, Hashimoto K, Nagata K, Yoshimura A: Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J Clin Invest 108: 1781–1788, 2001

    Article  PubMed  CAS  Google Scholar 

  22. Wormald S, Hilton DJ: Inhibitors of cytokine signal transduction. J Biol Chem 279: 821–824, 2004

    Article  PubMed  CAS  Google Scholar 

  23. Shultz LD, Rajan TV, Greiner DL: Severe defects in immunity and hematopoiesis caused by SHP–1 protein–tyrosine–phosphatase deficiency. Trends Biotechnol 15: 302–307, 1997

    Article  PubMed  CAS  Google Scholar 

  24. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Forster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts AW, Alexander WS: SOCS3 negatively regulates IL–6 signaling in vivo. Nat Immunol 4: 540–545, 2003

    Article  PubMed  CAS  Google Scholar 

  25. Croker BA, Metcalf D, Robb L, Wei W, Mifsud S, DiRago L, Cluse LA, Sutherland KD, Hartley L, Williams E, Zhang JG, Hilton DJ, Nicola NA, Alexander WS, Roberts AW: SOCS3 is a critical physiological negative regulator of G–CSF signaling and emergency granulopoiesis. Immunity 20: 153–165, 2004

    Article  PubMed  CAS  Google Scholar 

  26. Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN, Rutschman R, Murray PJ: SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 4: 546–550, 2003

    Article  PubMed  CAS  Google Scholar 

  27. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, Hanada T, Takeda K, Akira S, Hoshijima M, Hirano T, Chien KR, Yoshimura A: IL–6 induces an anti–inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4: 551–556, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczarek CM, Kay TW, Nicola NA, Hertzog PJ, Metcalf D, Hilton DJ: SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98: 597–608, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Krebs DL, Hilton DJ: SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19: 378–387, 2001

    Article  PubMed  CAS  Google Scholar 

  30. Kishimoto T, Akira S, Narazaki M, Taga T: Interleukin–6 family of cytokines and gp130. Blood 86: 1243–1254, 1995

    PubMed  CAS  Google Scholar 

  31. Costa–Pereira AP, Tininini S, Strobl B, Alonzi T, Schlaak JF, Is'harc H, Gesualdo I, Newman SJ, Kerr IM, Poli V: Mutational switch of an IL–6 response to an interferon–gamma–like response. Proc Natl Acad Sci USA 99: 8043–8047, 2002

    Article  PubMed  CAS  ADS  Google Scholar 

  32. Chen X, Bhandari R, Vinkemeier U, Van Den Akker F, Darnell JE Jr, Kuriyan J: A reinterpretation of the dimerization interface of the N–terminal domains of STATs. Protein Sci 12: 361–365, 2003

    Article  PubMed  CAS  Google Scholar 

  33. Vinkemeier U, Moarefi I, Darnell Jr JE, Kuriyan J: Structure of the amino–terminal protein interaction domain of STAT–4. Science 279: 1048–1052, 1998

    Article  PubMed  CAS  ADS  Google Scholar 

  34. Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell Jr JE, Chen X: Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 17: 761–771, 2005

    Article  PubMed  CAS  Google Scholar 

  35. Ota N, Brett TJ, Murphy TL, Fremont DH, Murphy KM: N–domain–dependent nonphosphorylated STAT4 dimers required for cytokine–driven activation. Nat Immunol 5: 208–215, 2004

    Article  PubMed  CAS  Google Scholar 

  36. Murphy TL, Geissal ED, Farrar JD, Murphy KM: Role of the Stat4 N domain in receptor proximal tyrosine phosphorylation. Mol Cell Biol 20: 7121–7131, 2000

    Article  PubMed  CAS  Google Scholar 

  37. Meyer T, Hendry L, Begitt A, John S, Vinkemeier U: A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of stat transcription factors. J Biol Chem 279: 18998–19007, 2004

    Article  PubMed  CAS  Google Scholar 

  38. Chang HC, Zhang S, Oldham I, Naeger L, Hoey T, Kaplan MH: STAT4 requires the N-terminal domain for efficient phosphorylation. J. Biol. Chem. 278: 32471–32477, 2003

    Article  PubMed  CAS  Google Scholar 

  39. Zhang X, Darnell JE, Jr.: Functional importance of Stat3 tetramerization in activation of the alpha 2–macroglobulin gene. J Biol Chem 276: 33576–33581, 2001

    Article  PubMed  CAS  Google Scholar 

  40. Xu X, Sun YL, Hoey T: Cooperative DNA binding and sequence–selective recognition conferred by the STAT amino–terminal domain. Science 273: 794–797, 1996

    PubMed  CAS  ADS  Google Scholar 

  41. Yang J, Chatterjee–Kishore M, Staugaitis SM, Nguyen H, Schlessinger K, Levy DE, Stark GR: Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 65: 939–947, 2005

    PubMed  CAS  Google Scholar 

  42. Wooten DK, Xie X, Bartos D, Busche RA, Longmore GD, Watowich SS: Cytokine signaling through Stat3 activates integrins, promotes adhesion, and induces growth arrest in the myeloid cell line 32D. J. Biol. Chem. 275: 26566–26575, 2000

    Article  PubMed  CAS  Google Scholar 

  43. Panopoulos AP, Bartos D, Zhang L, Watowich SS: Control of myeloid–specific integrin άMβ2 (CD11b/CD18) expression by cytokines is regulated by Stat3–dependent activation of PU.1. J. Biol. Chem. 277: 19001–19007, 2002

    Article  PubMed  CAS  Google Scholar 

  44. Naviaux RK, Costanzi E, Haas M, Verma IM: The pCL vector system: rapid production of helper–free, high–titer, recombinant retroviruses. J. Virol. 70: 5701–5705, 1996

    PubMed  CAS  Google Scholar 

  45. Auernhammer CJ, Bousquet C, Melmed S: Autoregulation of pituitary corticotroph SOCS–3 expression: characterization of the murine SOCS–3 promoter. Proc Natl Acad Sci U S A 96: 6964–6969, 1999

    Article  PubMed  CAS  ADS  Google Scholar 

  46. Lang R, Rutschman RL, Greaves DR, Murray PJ: Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL–10 under control of the human CD68 promoter. J. Immunol. 168: 3402–3411, 2002

    PubMed  CAS  Google Scholar 

  47. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ: Shaping gene expression in activated and resting primary macrophages by IL–10. J. Immunol. 169: 2253–2263, 2002

    PubMed  CAS  Google Scholar 

  48. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell Jr JE, Kuriyan J: Crystal structure of a tyrosine phosphorylated STAT–1 dimer bound to DNA. Cell 93: 827–839, 1998

    Article  PubMed  CAS  Google Scholar 

  49. Becker S, Groner B, Muller CW: Three–dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394: 145–151, 1998

    Article  PubMed  CAS  ADS  Google Scholar 

  50. Schroder M, Kroeger KM, Volk HD, Eidne KA, Grutz G: Preassociation of nonactivated STAT3 molecules demonstrated in living cells using bioluminescence resonance energy transfer: a new model of STAT activation? J Leukoc Biol 75: 792–797, 2004

    Article  PubMed  CAS  Google Scholar 

  51. Novak U, Ji H, Kanagasundaram V, Simpson R, Paradiso L: STAT3 forms stable homodimers in the presence of divalent cations prior to activation. Biochem Biophys Res Commun 247: 558–563, 1998

    Article  PubMed  CAS  Google Scholar 

  52. Kretzschmar AK, Dinger MC, Henze C, Brocke–Heidrich K, Horn F: Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells. Biochem J 377: 289–297, 2004

    Article  PubMed  CAS  Google Scholar 

  53. Pranada AL, Metz S, Herrmann A, Heinrich PC, Muller–Newen G: Real time analysis of STAT3 nucleocytoplasmic shuttling. J Biol Chem 279: 15114–15123, 2004

    Article  PubMed  CAS  Google Scholar 

  54. Gatto L, Berlato C, Poli V, Tininini S, Kinjyo I, Yoshimura A, Cassatella MA and Bazzoni F: Analysis of SOCS3 promoter responses to interferon gamma. J. Biol. Chem. 279: 13746–13754, 2004

    Article  PubMed  CAS  Google Scholar 

  55. Strehlow I, Schindler C: Amino–terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem 273: 28049–28056, 1998

    Article  PubMed  CAS  Google Scholar 

  56. Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S, Hoffmeyer A, Bauer A, Piekorz R, Wang D, Bunting KD, Wagner EF, Sonneck K, Valent P, Ihle JN, Beug H: Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 7: 87–99, 2005

    Article  PubMed  CAS  Google Scholar 

  57. Qing Y, Stark GR: Alternative activation of STAT1 and STAT3 in response to interferon-γ. J Biol Chem 279: 41679–41685, 2004

    Article  PubMed  CAS  Google Scholar 

  58. Cui Y, Riedlinger G, Tang W, Li C, Deng C–X, Robinson GW, Hennighausen L: Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24: 8037–8047, 2004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie S. Watowich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Badgwell, D.B., Bevers, J.J. et al. IL-6 signaling via the STAT3/SOCS3 pathway: Functional Analysis of the Conserved STAT3 N-domain. Mol Cell Biochem 288, 179–189 (2006). https://doi.org/10.1007/s11010-006-9137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9137-3

Keywords

Navigation