Skip to main content

Advertisement

Log in

Inhibition of adenosine kinase by phosphonate and bisphosphonate derivatives

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The enzyme adenosine kinase (AK) plays a central role in regulating the intracellular and interstitial concentration of the purine nucleoside adenosine (Ado). In view of the beneficial effects of Ado in protecting tissues from ischemia and other stresses, there is much interest in developing AK inhibitors, which can regulate Ado concentration in a site- and event-specific manner. The catalytic activity of AK from different sources is dependent upon the presence of activators such as phosphate (Pi). In this work we describe several new phosphorylated compounds which either activate or inhibit AK. The compounds acetyl phosphate, carbamoyl phosphate, dihydroxyacetone phosphate and imidodiphosphate were found to stimulate AK activity in a dose-dependent manner comparable to that seen with Pi. In contrast, a number of phosphonate and bisphosphonate derivatives, which included clodronate and etidronate, were found to inhibit the activity of purified AK in the presence of Pi. These AK inhibitors (viz. clodronate, etidronate, phosphonoacetic acid, 2-carboxyethylphosphonic acid, N-(phosphonomethyl)-glycine and N-(phosphonomethyl)iminodiacetic acid), at concentrations at which they inhibited AK, were also shown to inhibit the uptake of 3H-adenosine and its incorporation into macromolecules in cultured mammalian cells, indicating that they were also inhibiting AK in intact cells. The drug concentrations at which these effects were observed showed limited toxicity to the cultured cells, indicating that these effects are not caused by cellular toxicity. These results indicate that the enzyme AK provides an additional cellular target for the clinically widely used bisphosphonates and related compounds, which could possibly be exploited for a new therapeutic application. Our structure–activity studies on different AK activators and inhibitors also indicate that all of the AK activating compounds have a higher partial positive charge (δ+) on the central phosphorous atom in comparison to the inhibitors. This information should prove helpful in the design and synthesis of more potent inhibitors of AK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ado:

adenosine

AK:

adenosine kinase

ADA:

adenosine deaminase

EHNA:

erythro-9-(2-hydroxyl-3-nonyl) adenine

AP:

acetyl phosphate

CP:

carbamoyl phosphate

DHAP:

dihydroxyacetone phosphate

IDP:

imidodiphosphate

MPA:

methylphosphonic acid

DEPAA:

diethylphosphonoacetic acid

PAA:

phosphonoacetic acid

PFA:

phosphonoformic acid

CEPA:

2-carboxyethylphosphonic acid

PMG:

N-(phosphonomethyl)-glycine

PMIA:

N-(phosphonomethyl)iminodiacetic acid

AR:

adenosine receptor

5′NH2dAdo:

5′-amino, 5′-deoxyadenosine

5IT:

5-iodotubercidin

5′d-5IT:

5′-deoxy, 5-iodotubercidin

MOPAC:

molecular orbital package

MNDO:

modified neglect of diatomic overlap

References

  1. Chang CH, Cha S, Brockman RW, Bennett LL, Jr.: Kinetic studies of adenosine kinase from L1210 cells: A model enzyme with a two-site ping-pong mechanism. Biochemistry 22: 600–611, 1983

    CAS  PubMed  Google Scholar 

  2. Lindberg B, Klenow H, Hansen K: Some properties of partially purified mammalian adenosine kinase. J Biol Chem 242: 350–356, 1967

    CAS  PubMed  Google Scholar 

  3. Palella TD, Andres CM, Fox IH: Human placental adenosine kinase. Kinetic mechanism and inhibition. J Biol Chem 255: 5264–5269, 1980

    CAS  Google Scholar 

  4. Miller RL, Adamczyk DL, Miller WH, Koszalka GW, Rideout JL, Beacham LM, III, Chao EY, Haggerty JJ, Krenitsky TA, Elion GB: Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity. J Biol Chem 254: 2346–2352, 1979

    CAS  PubMed  Google Scholar 

  5. Mimouni M, Bontemps F, Van den BG: Kinetic studies of rat liver adenosine kinase. Explanation of exchange reaction between adenosine and AMP. J Biol Chem 269: 17820–17825, 1994

    CAS  Google Scholar 

  6. Newby AC: The role of adenosine kinase in regulating adenosine concentration. Biochem J 226: 343–344, 1985

    CAS  PubMed  Google Scholar 

  7. de Fazio A, Kosic JD, Moir RD, Bagnara AS: Evidence against the compartmentation of adenosine kinase and adenosine deaminase activities in human erythrocytes. FEBS Lett 113: 215–217, 1980

    Article  CAS  PubMed  Google Scholar 

  8. Berne RM: The role of adenosine in the regulation of coronary blood flow. Circ Res 47: 807–813, 1980

    CAS  PubMed  Google Scholar 

  9. Dawicki DD, Agarwal KC, Parks RE, Jr.: Role of adenosine uptake and metabolism by blood cells in the antiplatelet actions of dipyridamole, dilazep and nitrobenzylthioinosine. Biochem Pharmacol 34: 3965–3972, 1985

    Article  CAS  PubMed  Google Scholar 

  10. Grisham MB, Hernandez LA, Granger DN: Adenosine inhibits ischemia-reperfusion-induced leukocyte adherence and extravasation. Am J Physiol 257: H1334–H1339, 1989

    CAS  PubMed  Google Scholar 

  11. Grover GJ, Sleph PG, Dzwonczyk S: Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation 86: 1310–1316, 1992

    CAS  PubMed  Google Scholar 

  12. Gunther GR, Herring MB: Inhibition of neutrophil superoxide production by adenosine released from vascular endothelial cells. Ann Vasc Surg 5: 325–330, 1991

    Article  CAS  PubMed  Google Scholar 

  13. Schrader J, Haddy FJ, Gerlach E: Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflugers Arch 369: 1–6, 1977

    Article  CAS  PubMed  Google Scholar 

  14. Daly JW: Adenosine receptors: Targets for future drugs. J Med Chem 25: 197–207, 1982

    Article  CAS  PubMed  Google Scholar 

  15. Ralevic V, Burnstock G: Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492, 1998

    CAS  PubMed  Google Scholar 

  16. Bong GW, Rosengren S, Firestein GS: Spinal cord adenosine receptor stimulation in rats inhibits peripheral neutrophil accumulation. The role of N-methyl-D-aspartate receptors. J Clin Invest 98: 2779–2785, 1996

    CAS  PubMed  Google Scholar 

  17. Firestein GS, Bullough DA, Erion MD, Jimenez R, Ramirez-Weinhouse M, Barankiewicz J, Smith CW, Gruber HE, Mullane KM: Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor. The role of selectins. J Immunol 154: 326–334, 1995

    CAS  PubMed  Google Scholar 

  18. Headrick JP, Gauthier NS, Morrison R, Matherne GP: Cardioprotection by K(ATP) channels in wild-type hearts and hearts overexpressing A(1)-adenosine receptors. Am J Physiol Heart Circ Physiol 279: H1690–H1697, 2000

    CAS  PubMed  Google Scholar 

  19. Ramkumar V, Hallam DM, Nie Z: Adenosine, oxidative stress and cytoprotection. Jpn J Pharmacol 86: 265–274, 2001

    Article  CAS  PubMed  Google Scholar 

  20. Ahlijanian MK, Takemori AE: Effects of (−)-N6-(R-phenylisopropyl)-adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur J Pharmacol 112: 171–179, 1985

    Article  CAS  PubMed  Google Scholar 

  21. DeLander GE, Hopkins CJ: Involvement of A2 adenosine receptors in spinal mechanisms of antinociception. Eur J Pharmacol 139: 215–223, 1987

    Article  CAS  PubMed  Google Scholar 

  22. Holmgren M, Hednar T, Nordberg G, Mellstrand T: Antinociceptive effects in the rat of an adenosine analogue, N6-phenylisopropyladenosine. J Pharm Pharmacol 35: 679–680, 1983

    CAS  PubMed  Google Scholar 

  23. Holmgren M, Hedner J, Mellstrand T, Nordberg G, Hedner T: Characterization of the antinociceptive effects of some adenosine analogues in the rat. Naunyn Schmiedebergs Arch Pharmacol 334: 290–293, 1986

    Article  CAS  PubMed  Google Scholar 

  24. Post C: Antinociceptive effects in mice after intrathecal injection of 5-N-ethylcarboxamide adenosine. Neurosci Lett 51: 325–330, 1984

    Article  CAS  PubMed  Google Scholar 

  25. Dunwiddie TV, Worth T: Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther 220: 70–76, 1982

    CAS  PubMed  Google Scholar 

  26. Malhotra J, Gupta YK: Effect of adenosine receptor modulation on pentylenetetrazole-induced seizures in rats. Br J Pharmacol 120: 282–288, 1997

    CAS  PubMed  Google Scholar 

  27. Phillis JW, Wu PH: Roles of adenosine and adenine nucleotides in the central nervous system. In: JW Daly, JW Phillis, Y Kuroda, H Shimizu and M Ui (eds). Physiology and Pharmacology of Adenosine Derivatives, Raven Press, New York, 1983

    Google Scholar 

  28. Mullane K, Bullough D: Harnessing an endogenous cardioprotective mechanism: Cellular sources and sites of action of adenosine. J Mol Cell Cardiol 27: 1041–1054, 1995

    Article  CAS  PubMed  Google Scholar 

  29. Gupta RS: Adenosine-AMP exchange activity is an integral part of the mammalian adenosine kinase. Biochem Mol Biol Int 39: 493–502, 1996

    CAS  PubMed  Google Scholar 

  30. Hao W, Gupta RS: Pentavalent ions dependency of mammalian adenosine kinase. Biochem Mol Biol Int 38: 889–899, 1996

    CAS  PubMed  Google Scholar 

  31. Maj M, Singh B, Gupta RS: The influence of inorganic phosphate on the activity of adenosine kinase. Biochim Biophys Acta 1476: 33–42, 2000

    CAS  PubMed  Google Scholar 

  32. Park J, Singh B, Maj MC, Gupta RS: Phosphorylated derivatives that activate or inhibit mammalian adenosine kinase provide insights into the role of pentavalent ions in AK catalysis. Protein J 23: 167–177, 2004

    Article  CAS  PubMed  Google Scholar 

  33. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC: Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88: 2961–2978, 2000

    Article  CAS  PubMed  Google Scholar 

  34. Santini D, Vespasiani GU, Vincenzi B, Picardi A, Vasaturo F, La Cesa A, Onori N, Scarpa S, Tonini G: The antineoplastic role of bisphosphonates: From basic research to clinical evidence. Ann Oncol 14: 1468–1476, 2003

    Article  CAS  PubMed  Google Scholar 

  35. Maj MC, Singh B, Gupta RS: Pentavalent ions dependency is a conserved property of adenosine kinase from diverse sources: identification of a novel motif implicated in phosphate and magnesium ion binding and substrate inhibition. Biochemistry 41: 4059–4069, 2002

    Article  CAS  PubMed  Google Scholar 

  36. Stewart JJP: Special issue-Mopac-A semiempirical molecular-orbital program. J Comput Aided Mol Des 4: 1–45, 1990

    Article  PubMed  Google Scholar 

  37. Dewar MJS, Thiel W: Ground-states of molecules. 38. Mndo method-Approximations and parameters. J Am Chem Soc 99: 4899–4907, 1977

    CAS  Google Scholar 

  38. Besler BH, Merz KM, Kollman PA: Atomic charges derived from semiempirical methods. J Comput Chem 11: 431–439, 1990

    Article  CAS  Google Scholar 

  39. Luque FJ, Illas F, Orozco M: Comparative-study of the molecular electrostatic potential obtained from different wave-functions – Reliability of the semiempirical Mndo wave-function. J Comput Chem 11: 416–430, 1990

    Article  CAS  Google Scholar 

  40. Jiang N, Kowaluk EA, Lee CH, Mazdiyasni H, Chopp M: Adenosine kinase inhibition protects brain against transient focal ischemia in rats. Eur J Pharmacol 320: 131–137, 1997

    Article  CAS  PubMed  Google Scholar 

  41. Kowaluk EA, Kohlhaas KL, Bannon A, Gunther K, Lynch JJ, III, Jarvis MF: Characterization of the effects of adenosine kinase inhibitors on acute thermal nociception in mice. Pharmacol Biochem Behav 63: 83–91, 1999

    Article  CAS  PubMed  Google Scholar 

  42. Miller LP, Jelovich LA, Yao L, DaRe J, Ugarkar B, Foster AC: Pre- and peristroke treatment with the adenosine kinase inhibitor, 5-deoxyiodotubercidin, significantly reduces infarct volume after temporary occlusion of the middle cerebral artery in rats. Neurosci Lett 220: 73–76, 1996

    Article  CAS  PubMed  Google Scholar 

  43. Wiesner JB, Ugarkar BG, Castellino AJ, Barankiewicz J, Dumas DP, Gruber HE, Foster AC, Erion MD: Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther 289: 1669–1677, 1999

    CAS  PubMed  Google Scholar 

  44. Davies LP, Baird-Lambert J, Marwood JF: Studies on several pyrrolo[2,3-d]pyrimidine analogues of adenosine which lack significant agonist activity at A1 and A2 receptors but have potent pharmacological activity in vivo. Biochem Pharmacol 35: 3021–3029, 1986

    Article  CAS  PubMed  Google Scholar 

  45. Ugarkar BG, Castellino AJ, DaRe JM, Kopcho JJ, Wiesner JB, Schanzer JM, Erion MD: Adenosine kinase inhibitors. 2. Synthesis, enzyme inhibition, and antiseizure activity of diaryltubercidin analogues. J Med Chem 43: 2894–2905, 2000

    CAS  PubMed  Google Scholar 

  46. Ugarkar BG, DaRe JM, Kopcho JJ, Browne CE, III, Schanzer JM, Wiesner JB, Erion MD: Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chem 43: 2883–2893, 2000

    CAS  PubMed  Google Scholar 

  47. Russell RG, Rogers MJ: Bisphosphonates: From the laboratory to the clinic and back again. Bone 25: 97–106, 1999

    Article  CAS  PubMed  Google Scholar 

  48. Schenk R, Merz WA, Muhlbauer R, Russell RG, Fleisch H: Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (Cl 2 MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif Tissue Res 11: 196–214, 1973

    CAS  PubMed  Google Scholar 

  49. Chaudhary K, Darling JA, Fohl LM, Sullivan WJ, Jr., Donald RG, Pfefferkorn ER, Ullman B, Roos DS: Purine salvage pathways in the apicomplexan parasite Toxoplasma gondii. J Biol Chem 279: 31221–31227, 2004

    Article  CAS  PubMed  Google Scholar 

  50. Datta R, Das I, Sen B, Chakraborty A, Adak S, Mandal C, Datta AK: Mutational analysis of the active site residues crucial for catalytic activity of adenosine kinase from Leishmania donovani. Biochem J 2004

  51. Mathews II, Erion MD, Ealick SE: Structure of human adenosine kinase at 1.5 Å resolution. Biochemistry 37: 15607–15620, 1998

    Article  CAS  PubMed  Google Scholar 

  52. Schumacher MA, Scott DM, Mathews II, Ealick SE, Roos DS, Ullman B, Brennan RG: Crystal structures of Toxoplasma gondii adenosine kinase reveal a novel catalytic mechanism and prodrug binding. J Mol Biol 298: 875–893, 2000

    Article  CAS  PubMed  Google Scholar 

  53. Sigrell JA, Cameron AD, Jones TA, Mowbray SL: Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 Å resolution: insights into a new family of kinase structures. Structure 6: 183–193, 1998

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Singh, B. & Gupta, R.S. Inhibition of adenosine kinase by phosphonate and bisphosphonate derivatives. Mol Cell Biochem 283, 11–21 (2006). https://doi.org/10.1007/s11010-006-2216-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-2216-7

Key Words

Navigation