Skip to main content

All-trans retinoic acid induces free radical generation and modulate antioxidant enzyme activities in rat sertoli cells

Abstract

In this work we investigated the effects of retinoic acid (RA) in Sertoli cells. Sertoli cells isolated from 15-day-old Wistar rats were previously cultured for 48 h and then treated with RA for 24 h. RA at high doses (1–10 μM) increased TBARS levels and induced a decrease in cell viability. At low doses (0.1–100 nM) RA did not increase TBARS level. RA also did not increase cell death at these doses. In order to investigate changes in antioxidant defenses we measured the CAT, SOD and GPx activities in Sertoli cells treated with RA. Compared to control, RA increased around 200% SOD activity in all doses tested (0.1–100 nM); GPx activity was increased 407.49, 208.98 and 243.88% (0.1, 1 and 10 nM, respectively); CAT activity was increased 127% with RA 1 nM. To clarify if RA induces ROS production per se, we performed experiments in vitro using 2-deoxyribose as specific substrate of oxidative degradation by OH radical as well as TRAP assay. RA at 10 μM increased 2-deoxyribose degradation, suggesting that some of the RA-induced effects are mediated via OH formation. Furthermore, the total reactive antioxidant potential (TRAP) of the RA was determined. At low concentrations RA has induced no redox activity. Conversely, higher concentration of RA (1–10 μM) increased chemiluminescence. The chemiluminescence produced was directly proportional to radical generation. We provide, for the first time, evidence for a free radical generation by RA. Our results demonstrated that RA plays an important role in Sertoli cells and these effects appear to be mediated by ROS.

This is a preview of subscription content, access via your institution.

References

  1. Livrea MA, Packer L: In: Retinoids-Progress in research and clinical applications. Marcel Dekker Inc, New York, USA, 1993

    Google Scholar 

  2. Giguere V: Retinoic acid receptors and cellular retinoid binding proteins: Complex interplay in retinoid signaling. Endocr Rev 15: 61–79, 1994

    PubMed  CAS  Article  Google Scholar 

  3. Radominska-Pandya A, Chen G, Czernik PJ, Little JM, Samokyszyn VM, Carter CA, Nowak G: Direct interaction of All-trans-retinoic acid with protein kinase C (PKC): Implications for PKC signaling and cancer therapy. J Biol Chem 275: 22324–22330, 2000

    PubMed  CAS  Article  Google Scholar 

  4. Ames BN, Shigenaga MK, Hagen TM: Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915–7922, 1993

    PubMed  CAS  Article  Google Scholar 

  5. Bauche F, Fouchard MH, Jegou B: Antioxidant system in rat testicular cells. FEBS Letters 349: 392–396, 1994

    PubMed  CAS  Article  Google Scholar 

  6. Slaga TJ: Nutrition and Bio/Technology in heart disease and cancer. In: J.B. Longenecker, D. Kritchevsky, M.K. Drezner (eds). Plenum Publishing Corp., New York, 1995, pp 167–174

    Google Scholar 

  7. Willet WC, MacMahon B: Diet and cancer–an overview. N Engl J Med 310: 633–638, 1984

    Article  Google Scholar 

  8. Burton GW, Ingold KU: Beta-Carotene: an unusual type of lipid antioxidant. Science 224: 569–573, 1984

    PubMed  CAS  Google Scholar 

  9. Graham S, Haugey J, Marshall R et al.: Diet in the epidemiology of carcinoma of the prostate gland. J Natl Cancer Inst 70: 687–692, 1983

    PubMed  CAS  Google Scholar 

  10. Heshmat MY, Kaul L, Kovi J et al.: Nutrition and prostate cancer: a case-control study. Prostate. 6: 7–17, 1985

    PubMed  CAS  Google Scholar 

  11. Omenn GS, Goodman GE, Thornquist MD, Balmes J et al.: Effects of a combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334: 1150–1155, 1996

    PubMed  CAS  Article  Google Scholar 

  12. Dal-Pizzol F, Klamt F, Frota MLC, Moraes LF, Moreira JCF, Benfato MS: Retinol supplementation induces DNA damage and modulates iron turnover in rat Sertoli cells. Free Rad Res 33: 677–687, 2000

    CAS  Google Scholar 

  13. Palozza P, Calviello G, Serini S, Maggiano N, Lanza P, Ranelletti FO, Bartoli GM: Beta-carotene at high concentrations induces apoptosis by enhancing oxy-radical production in human adenocarcinoma cells. Free Radic Biol Med 30: 1000–1007, 2001

    PubMed  CAS  Article  Google Scholar 

  14. Moreira JCF, Dal-Pizzol F, Von Endt D, Bernard EA: Effect of retinol on chromatin structure in Sertoli cells: 1,10-phenanthroline inhibit the increased DNAse I sensitivity induced by retinol. Med Sci Res 25: 635–638, 1997

    Google Scholar 

  15. Moreira JCF, Dal-Pizzol F, Guma FCR, Bernard EA: Effects of pretreatment with hydroxyurea on the increase in [methyl-3H] thymidine incorporation induced by retinol treatment in Sertoli cells. Med Sci Res 24: 383–384, 1996

    CAS  Google Scholar 

  16. Moreira JCF, Junqueira LAV, Von Endt D, Bernard EA: The effect of retinol pre-incubation on the phosphorylation of histones and HMGs from cultured Sertoli cells. Med Sci Res 22: 783–784, 1994

    CAS  Google Scholar 

  17. Klamt F, Dal-Pizzol F, Ribeiro NC, Bernard EA, Benfato MS, Moreira JCF: Retinol-induced elevation of ornithine decarboxylase activity in cultured rat Sertoli cells is attenuated by free radical scavenger by iron chelator. Mol. Cell. Biochem 208: 71–76, 2000

    PubMed  CAS  Article  Google Scholar 

  18. Dal-Pizzol F, Klamt F, Benfato MS, Bernard EA, Moreira JCF: Retinol supplementation induces oxidative stress and modulate antioxidant enzyme activities in rat Sertoli cells. Free Rad Res 34: 395–404, 2001

    CAS  Google Scholar 

  19. Frota ML Jr, Klamt F, Dal-Pizzol F, Schiengold M, Moreira JCF: Retinol-induced mdr1 and mdr3 modulation in cultured rat Sertoli cells is attenuated by free radical scavengers. Redox Rep 9: 161–165, 2004

    PubMed  Article  CAS  Google Scholar 

  20. Esterbauer H, Cheeseman KH: Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxynonenal. Methods Enzymol 186: 407–421, 1990

    PubMed  CAS  Google Scholar 

  21. Aebi H: Catalase in vitro. Methods Enzymol 105: 121–126, 1984

    PubMed  CAS  Google Scholar 

  22. Flohé L, Günzler WA: Assays of glutathione peroxidase. Methods Enzymol 105: 114–121, 1984

    PubMed  Article  Google Scholar 

  23. Bannister JV, Calabrese L: Assays for SOD. Methods Biochem Anal 32: 279–312, 1987

    PubMed  CAS  Google Scholar 

  24. Uliazs TF, Hewett SJ: A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture. J Neurosci Methods 100: 157–163, 2000

    Article  Google Scholar 

  25. Hermes-Lima M, Wang EM, Schulman HM, Storey KB, Ponka P: Deoxyribose degradation catalyzed by Fe(III)EDTA: kinetics aspects and potential usefullness for submicromolar iron measurements. Mol Cell Biochem 137: 65–73, 1994

    PubMed  CAS  Article  Google Scholar 

  26. Wayner DDM, Burton GW, Ingold KU, Locke S: Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. FEBS Lett 187: 33–37, 1985

    PubMed  CAS  Article  Google Scholar 

  27. Lowry OH, Rosebrough AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  28. Yoo HY, Chang MS, Rho HM: Induction of Cu/Zn superoxide dismutase gene through the peroxisome proliferator-responsive element by arachidonic acid. Gene 234: 87–91, 1999

    PubMed  CAS  Article  Google Scholar 

  29. Teixeira CC, Shapiro M, Rajpurohit R, Koch C: Retinoic acid modulation of glutathione and cysteine metabolism in chondrocytes. Biochem J 314: 21–26, 1996

    PubMed  CAS  Google Scholar 

  30. Murata M, Kawanishi S: Oxidative DNA damage by vitamin A and its derivative via superoxide generation. J Biol Chem 275: 2003–2008, 2000

    PubMed  CAS  Article  Google Scholar 

  31. Chen Y, Buck J, Derguini F: Anydroretinol induces oxidative stress and cell death. Cancer Res 59: 3985–3990, 1999

    PubMed  CAS  Google Scholar 

  32. Hurnanen D, Chan M, Kubow S: The protective effect of metallothionein against lipid peroxidation caused by retinoic acid in human breast cancer cells. J Pharmacol Exp Ther 283: 1520–1528, 1997

    PubMed  CAS  Google Scholar 

  33. Alam SQ, Alam BS, Chen TW: Activities of fatty acid desaturases and fatty acid composition of liver microssomes in rats fed β-carotene and 13-cis retinoic acid. Biochim Biophys Acta 792: 110–117, 1984

    PubMed  CAS  Google Scholar 

  34. Davis WL, Crawford LA, Cooper OJ et al.: Generation of radical oxygen species by neural crest cells treated in vitro with isotretinoin and 4-oxo-isotretinoin. J Craniofac Genet Dev Biol 10: 295–310, 1990

    PubMed  CAS  Google Scholar 

  35. Herbert V: Pro-oxidants effects of antioxidants vitamins. J Nutr 126: 1197–1200, 1996

    Google Scholar 

  36. De Leen Heer AP, Lambert WE, Claeys I: All-trans retinoic acid: measurement of reference values in human serum by high performance liquid chromatography. J Lipid Res 23: 1362–1367, 1982

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mario Luiz Conte da Frota Jr..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

da Frota, M.L.C., Da Silva, E.G., Behr, G.A. et al. All-trans retinoic acid induces free radical generation and modulate antioxidant enzyme activities in rat sertoli cells. Mol Cell Biochem 285, 173–179 (2006). https://doi.org/10.1007/s11010-005-9077-3

Download citation

Keywords

  • All-trans retinoic acid
  • antioxidant
  • free radicals
  • retinoid action
  • sertoli cells