Skip to main content

Advertisement

Log in

Whole body exposure to low frequency magnetic field: No provable effects on the cellular energetics of rat skeletal muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

On the basis of previous experience with biological effects of electromagnetic fields a potential effect of homogeneous sinusoidal magnetic field (50Hz, 10mT) on energy state of rat skeletal muscle was investigated. Two different total body exposures to magnetic field were selected: (1) repeated 1 hour exposure, 2 times a week for 3 months, and (2) acute 1.5 hour exposure (and the appropriate control groups). Important energy metabolites (adenosine triphosphate – ATP, creatine phosphate, creatine, lactate, pyruvate and inorganic phosphate) were analysed by enzymatic and spectroscopic methods in musculus gracilis cranialis.On the basis of the concentration of important energy metabolites the apparent Gibbs free energy of ATP hydrolysis and creatine charge was calculated. Our results demonstrate no influence of this low frequency magnetic field on the level of important energy metabolites in rat skeletal muscle. The conclusion of this study is that neither repeated exposure nor the acute exposure of rats to the sinusoidal magnetic field of given parameters has any important influence on the energy state of the skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hossmann K-A, Hermann DM: Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 24: 49–62, 2003

    Article  PubMed  CAS  Google Scholar 

  2. Aran JM, Carrere N, Chalan Y, Dulou PE, Larrieu S, Letenneur L, Veyret B, Dulon D: Effects of exposure of the ear to GSM microwaves: in vivo and in vitro experimental studies. Int J Audiol 43: 545–554, 2004

    Article  PubMed  Google Scholar 

  3. Foster KR: Do ELF bioeffects studies have relevance to RF bioeffects? In: Forschungsgemanschaft Funk, Berufsgenossenschaft der Feinmechanik und Elektrotechnik and COST 244 Bis (eds), Workshop: Biological and Biophysical Research at Extremely Low- and Radio Frequencies. Berufsgenossenschaft der Feinmechanik und Elektrotechnik, Köln, pp. 27–33, 2003

  4. Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR: Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phone. Environ Health Perspectives 111: 881–883, 2003

    Article  Google Scholar 

  5. Brendel H, Niehaus M, Lerchl A: Direct suppressive effects of weak magnetic fields (50 Hz and 16 2/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). J Pineal Res 29: 228–233, 2000

    Article  PubMed  CAS  Google Scholar 

  6. Johnston S: Studies on effects of ELF and non-thermal modulated radiofrequency on biological molecules and subcellular fractions. In: Forschungsgemanschaft Funk, Berufsgenossenschaft der Feinmechanik und Elektrotechnik and COST 244 Bis (eds), Workshop: Biological and Biophysical Research at Extremely Low- and Radio Frequencies. Berufsgenossenschaft der Feinmechanik und Elektrotechnik, Köln, pp. 35–42, 2003

  7. Stavroulakis P: Therapeutic effects of electromagnetic fields. In: Stavroulakis P (ed). Biological effects of electromagnetic fields. Springer Verlag, Berlin, Heidelberg, New York, pp. 624–732, 2003

    Google Scholar 

  8. Vojtisek M, Jerabek J, Knotkova J, Hornychova M, Formanek J, Hulinska D, Bittnerova D: The influence of a magnetic field on manganese transport into rat brain. Rev Environ Health 11: 229–233, 1996

    PubMed  CAS  Google Scholar 

  9. Vojtisek M, Knotkova J, Kasparova L, Hornychova M, Frantik E, Hulinska D, Svandova E: Influence of a chemical and/or physical factor/s on the brain. In: Pokorny J (ed). Abstract Book: Coherence and Electromagnetic Fields in Biological Systems. Neoset, Prague, pp. 72–73, 2005

    Google Scholar 

  10. Blank M, Soo L: Enhancement of cytochrome oxidase activity in 60 Hz magnetic field. Bioelectrochem Bioenerg 45: 253–259, 1998

    Article  CAS  Google Scholar 

  11. Musil J: The Czech limits and the European prestandards. In: Klauenberg BJ, Miklavcic D (eds). Proceedings of the NATO Advanced Research Workshop on Radio Dosimetry and its Relationship to the Biological Effects of Electromagnetic Fields, Oct. 12–16, 1998, Goyd Martuljek, Slovenia NATO Science Partnership Sub-Series 3: High Technology, Vol. 82, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 541–544, 2000

  12. Stefl B, Mejsnar JA, Janovska A: Energy metabolism of rat skeletal muscle modulated by the rate of perfusion flow. Exp Physiol 84: 651–663, 1999

    Article  PubMed  CAS  Google Scholar 

  13. Connett RJ: Analysis of metabolic control: new insight using scaled creatine kinase model. Am J Physiol Regulatory Integrative Comp Physiol 254: R949-R959, 1988

    CAS  Google Scholar 

  14. Lawson JWR, Veech RL: Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem 254: 6528–6537, 1979

    PubMed  CAS  Google Scholar 

  15. Arnold S, Kadenbach B: Intramitochondrial ATP/ADP-ratios control cytochrome c oxidase activity allosterically. FEBS Lett 443: 105–108, 1999

    Article  PubMed  CAS  Google Scholar 

  16. Arnold S, Kadenbach B: Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome c oxidase. Eur J Biochem 249: 350–354, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Kadenbach B, Arnold S: Minireview. A second mechanism of respiratory control. FEBS Lett 447: 131–134, 1999

    CAS  Google Scholar 

  18. Bender E, Kadenbach B: The allosteric ATP-inhibition of cytochrome c oxidase is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466: 130–134, 2000

    Article  PubMed  CAS  Google Scholar 

  19. Lee I, Bender E, Kadenbach B: Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem 234/235: 63–70, 2002

    Article  CAS  Google Scholar 

  20. Detlavs IE et al.: Electromagnetotherapy of traumas and diseases of locomotor apparatus. Riga – RMI 1987; pp. 110–123 (Cited by Jerabek J: The First World Congress of Magnetotherapy, London, 1996)

  21. Pafkova H, Jerabek J, Tejnorova I, Bednar V: Developmental effects of magnetic field (50 Hz) in combination with ionizing radiation and chemical teratogens. Toxicol-Lett 88: 313–316, 1996

    Article  PubMed  CAS  Google Scholar 

  22. Nossol B, Buse G, Silny J: Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase. Bioelectromagnetics 14: 361–372, 1993

    Article  PubMed  CAS  Google Scholar 

  23. Dacha M, Accorsi A, Pierotti C, Vetrano F, Mantovani ROG, Conti R, Nicolini P: Studies on the possible biological effects of 50 Hz electric and/or magnetic fields: evaluation of some glycolytic enzymes, glycolytic flux, energy and oxido-reductive potential in human erythrocytes exposed in vitro to power frequency fields. Bioelectromagnetics 14: 383–391, 1993

    Article  PubMed  CAS  Google Scholar 

  24. Shupak NM: Therapeutic uses of pulsed magnetic-field exposure: a reviw. Radio Science Bulletin 307: 9–32, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefl, B., Vojtisek, M., Synecka, L. et al. Whole body exposure to low frequency magnetic field: No provable effects on the cellular energetics of rat skeletal muscle. Mol Cell Biochem 284, 111–115 (2006). https://doi.org/10.1007/s11010-005-9025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9025-2

Key words

Navigation