Skip to main content
Log in

Evolution of renal function and Na+, K+-ATPase expression during ischaemia-reperfusion injury in rat kidney

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the effects of an unilateral ischaemic-reperfusion injury on Na+, K+-ATPase activity, α1 and β1 subunits protein and mRNA abundance and ATP content in cortical and medullary tissues from postischaemic and contralateral kidneys. Right renal artery was clamped for 40 min followed by 24 and 48 h of reperfusion. Postischaemic and contralateral renal function was studied cannulating the ureter of each kidney. Postischaemic kidneys after 24 (IR24) and 48 (IR48) hours of reperfusion presented a significant dysfunction. Na+, K+-ATPase α1 subunit abundance increased in IR24 and IR48 cortical tissue and β1 subunit decreased in IR48. In IR24 medullary tissue, α1 abundance increased and returned to control values in IR48 while β1 abundance was decreased in both periods. Forty minutes of ischaemia without reperfusion (I40) promoted an increment in α1 mRNA in cortex and medulla that normalised after 24 h of reperfusion. β1 mRNA was decreased in IR24 medullas. No changes were observed in contralateral kidneys. This work provides evidences that after an ischaemic insult α1 and β1 protein subunit abundance and mRNA levels are independently regulated. After ischaemic-reperfusion injury, cortical and medullary tissue showed a different pattern of response. Although ATP and Na+, K+-ATPase activity returned to control values, postischemic kidney showed an abnormal function after 48 h of reflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molitoris BA, Marrs J: The role of cell adhesion molecules in ischemic acute renal failure. Am J Med 106: 583–592, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Weimberg JM: The cell biology of the ischemic renal injury. Kidney Int 39: 476–490, 1991

    Google Scholar 

  3. Venkatachalam MA, Bernard DB, Donohoe J, Levinsky NG: Ischemic damage and repair in the rat proximal tubule. Differences among S1, S2 and S3 segments. Kidney Int 14: 31–49, 1978

    PubMed  CAS  Google Scholar 

  4. Brezis M, Rosen S, Silva P, Epstein FH: Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin Invest 73: 182–190, 1984

    Article  PubMed  CAS  Google Scholar 

  5. Bonventre JV, Brezis M, Siegel N, Rosen S, Portilla D, Venkatachalam M: Acute renal failure I. Relative importance of proximal vs. distal tubular injury. Am J Physiol 275: F623–F632, 1998

    Google Scholar 

  6. Hanley MJ: Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am J Physiol 239: F17–F23, 1980

    PubMed  CAS  Google Scholar 

  7. Johnston PA, Rennke H, Levinsky NG: Recovery of proximal tubular function from ischemic injury. Am J Physiol 246: F159–F166, 1984

    PubMed  CAS  Google Scholar 

  8. Wang Z, Rabb H, Haq M, Shull GE, Soleimani M: A possible molecular basis of natriuresis during ischemic-reperfusion injury in the kidney. J Am Soc Nephrol 9: 605–613, 1998

    PubMed  CAS  Google Scholar 

  9. Kellerman PS, Bogusky RT: Microfilament disruption occurs very early in ischemic proximal tubule cell injury. Kidney Int 42: 896–902, 1992

    PubMed  CAS  Google Scholar 

  10. Fish EM, Molitoris BA: Alteration in epithelial polarity and the pathogenesis of disease states. N Eng J Med 330: 1580–1588, 1994

    Article  CAS  Google Scholar 

  11. Spiegel DM, Wilson PD, Molitoris BA: Epithelial polarity following ischemia: A requirement for normal cell function. Am J Physiol 256: F430–F436, 1989

    PubMed  CAS  Google Scholar 

  12. Van Why SK, Mann AS, Ardito T, Siegel NJ, Kashgarian M: Expression and molecular regulation of Na+, K+-ATPase after renal ischemia. Am J Physiol 267: F75–F85, 1994

    PubMed  CAS  Google Scholar 

  13. Kwon TH, Frokier J, Han JS, Knepper M, Nielsen S: Decreased abundance of major Na+ transporters in kidneys of rats with ischemia-induced acute renal failure. Am J Physiol 278: F925–F939, 2000

    CAS  Google Scholar 

  14. Fekete A, Vannay A, Vér A, Vásárhelyi B, Müller V, Ouyang N, Reusz G, Tulassay T, Szabó A: Sex differences in the alterations of Na+, K+-ATPase following ischaemia-reperfusion injury in the rat kidney. J Physiol 555: 471–480, 2003

    Article  PubMed  CAS  Google Scholar 

  15. Hasler U, Wang X, Cramber G, Beguin P, Jaisser F, Horisberger JD, Geering K: Role of beta-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na, K-ATPase. J Biol Chem 273: 30826–30835, 1998

    Article  PubMed  CAS  Google Scholar 

  16. Coux G, Trumper L, Elías MM: Cortical Na+, K+-ATPase activity, abundance and distribution after in vivo renal ischemia without reperfusion in rats. Nephron 89: 82–89, 2001

    Article  PubMed  CAS  Google Scholar 

  17. Petrini G, Ochoa EJ, Serra E, Torres AM, Elías MM: Fibronectin expression in proximal tubules from ischemic rat kidneys without reperfusion. Mol Cell Biochem 241: 21–27, 2002

    Article  PubMed  CAS  Google Scholar 

  18. Coux G, Trumper L, Elías MM: Renal function and cortical Na+, K+-ATPase activity, abundance and distribution after ischaemia-reperfusion in rats. Biochim Biophys Acta 1586: 71–80, 2002

    PubMed  CAS  Google Scholar 

  19. Valdivieso JM, Crespo C, Alonso JR, Martínez-Salgado C, Eleno N, Arévalo M, Pérez-Barriocanal F, López-Novoa JM: Renal ischemia in the rat stimulates glomerular nitric oxide synthesis. Am J Physiol 280: R771–R779, 2001

    Google Scholar 

  20. Boumendil-Povedin EF, Povedin RA: Isolation of basolateral and brush-border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction. Biochim Biophys Acta 735: 86–94, 1983

    Article  Google Scholar 

  21. Koshier FJ, Stokols MF, Goldinger JM, Acara M, Hong SK: Effects of DIDS on renal tubular transport. Am J Physiol 238: F99–F106, 1980

    Google Scholar 

  22. Summer J: A method for the colorimetric determination of phosphorus. Science 100: 413–414, 1944

    Google Scholar 

  23. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    Article  PubMed  CAS  Google Scholar 

  24. Towbin H, Staehelim T, Gordon J: Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4353, 1979

    Article  PubMed  CAS  Google Scholar 

  25. Sweadner KJ: Anomalies in the electrophoretic resolution of Na+, K+-ATPase catalytic subunit isoforms reveal unusual protein-detergent interactions. Biochim Biophys Acta 1029: 13–23, 1990

    Article  PubMed  CAS  Google Scholar 

  26. Trumper L, Coux G, Elías MM: Effect of acetaminophen on Na+, K+-ATPase and alkaline phosphatase on plasma membranes of renal proximal tubules. Toxicol Appl Pharmacol 164: 143–148, 2000

    Article  PubMed  CAS  Google Scholar 

  27. Tsuchiya K, Giebisch G, Welling P: Aldosterone-dependent regulation of Na+, K+-ATPase subunit mRNA in the rat CCD: competitive PCR analysis. Am J Physiol 271: F7–F15, 1996

    PubMed  CAS  Google Scholar 

  28. Roe HH, Epstein JH, Goldstein NP: A photometric method for the determination of inulin in plasma and urine. J Biol Chem 178: 839–843, 1949

    CAS  PubMed  Google Scholar 

  29. Waugh WH, Beall PT: Simplified measurement of p-aminohippurate and other arylamines in plasma and urine. Kidney Int 5: 429–436, 1974

    PubMed  CAS  Google Scholar 

  30. Sedmak JJ, Grossberg SE: A rapid, sensitive and versatile assay for protein using Coomassie Brilliant Blue G-250. Anal Biochem 79: 544–552, 1971

    Article  Google Scholar 

  31. Lamprecht W, Trautschold I: Adenosine-5′-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed). Methods of Enzymatic Analysis. Academic Press, Orlando, 1974, pp 2101–2109

  32. Barrilli A, Molinas S, Petrini G, Menacho M, Elías MM: Losartan reverses fibrotic changes in cortical renal tissue induced by ischemia or ischemia-reperfusion without changes in renal function. Mol Cell Biochem 260: 161–170, 2004

    Article  PubMed  CAS  Google Scholar 

  33. Brady BR, Brenner BM, Lieberthal W: Acute renal failure. In: Brenner B (ed). The Kidney, Vol 2. W. B. Saunders Co, Philadelphia, PA, 1996, pp 1200–1252

  34. Lingrel JB, Orlowski J, Shull MM, Price EM: Molecular genetics of Na+, K+-ATPase. Prog Nucleic Acid Res Mol Biol 38: 37–89, 1990

    Article  PubMed  CAS  Google Scholar 

  35. McDonough AA, Geering K, Farley RA: The sodium pump needs its β subunit. FASEB J 4: 1598–1605, 1990

    PubMed  CAS  Google Scholar 

  36. Mircheff AK, Bowen JW, Yiu SC, McDonough AA: Synthesis and translocation of Na+, K+-ATPase α and β subunits to plasma membrane in MDCK cells. Am J Physiol 262: C470–C483, 1992

    PubMed  CAS  Google Scholar 

  37. Verrey F, Schaerer E, Zoerkler P, Paccolat MP, Geering K, Kraehenbuhl JP, Rossier BC: Regulation by aldosterone of Na+, K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J Cell Biol 104: 1231–1237, 1987

    Article  PubMed  CAS  Google Scholar 

  38. Tang M, Mc Donough AA: Low K+ increases Na+, K+-ATPase α and β subunits mRNA and protein abundance in cultured renal proximal tubule cells. Am J Physiol 263: C436–C442, 1992

    PubMed  CAS  Google Scholar 

  39. Hawng SJ, Chang JM, Chen HC, Tsai JH, Lai YH: Changes of renal cortical Na+, K+-ATPase activity, protein, and mRNA expression in ureteral obstruction. Kaohsiung J Med Sci 18: 273–280, 2002

    Google Scholar 

  40. Pressley TA: Ion concentration-dependent regulation of Na, K-pump abundance. J Membr Biol 105: 187–195, 1988

    Article  PubMed  CAS  Google Scholar 

  41. Bertorello AM, Ridge KM, Chibalin AV, Katz AI, Sznajder JI: Isoproterenol increases Na+, K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells. Am J Physiol 276: L20–L27, 1999

    PubMed  CAS  Google Scholar 

  42. Wendt CH, Towle H, Sharma R, Duvick S, Kawakami K, Gick G, Ingbar DH: Regulation of Na+, K+-ATPase gene expression by hyperoxia in MDCK cells. Am J Physiol 274: C356–C364, 1998.

    Google Scholar 

  43. Muto S, Nemoto J, Okada K, Miyata Y, Kawakami K, Saito T, Asano Y: Intracellular Na+ directly modulates Na+, K+-ATPase gene expression in normal rat kidney epithelial cells. Kidney Int 57: 1617–1635, 2000

    Article  PubMed  CAS  Google Scholar 

  44. Dagenais A, Denis C, Vives MF, Girouard S, Massé C, Nguyen T, Yamagata T, Grygorczyk C, Kothary R, Berthiaume Y: Modulation of α-EnaC and α1- Na+, K+-ATPase by cAMP and dexamethasone in alveolar epithelial cells. Am J Physiol 281:L217–L230, 2001

    Google Scholar 

  45. Rayson BM: [Ca2+]i regulates transcription rate of the Na+/K+-ATPase α1 subunit. J Biol Chem 266(32): 21335–21338, 1991

    Google Scholar 

  46. Isenovic ER, Jacobs DB, Kedees MH, Sha Q, Milivojevic N, Kawakami K, Gick G, Sowers JR: Angiotensin II regulation of the Na+ pump involves the phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways in vascular smooth muscle cells. Endocrinology 145(3): 1151–1160, 2004

    Google Scholar 

  47. Alejandro VS, Nelson J, Huie P, Sibley RK, Dafoe D, Kuo P, Scandling JD, Myers BD: Postischemic injury, delayed function and Na+, K+-ATPase distribution in the transplanted kidney. Kidney Int 48: 1308–1315, 1995

    PubMed  CAS  Google Scholar 

  48. Kwon O, Corrigan G, Myers BD, Sibley R, Scandling JD, Dafoe D, Alfrey E, Nelson WJ: Sodium reabsortion and distribution of Na+/K+-ATPase during postischemic injury to the renal allograft. Kidney Int 55: 963–975, 1999

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mónica Elías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinas, S.M., Trumper, L., Serra, E. et al. Evolution of renal function and Na+, K+-ATPase expression during ischaemia-reperfusion injury in rat kidney. Mol Cell Biochem 287, 33–42 (2006). https://doi.org/10.1007/s11010-005-9021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9021-6

Keywords

Navigation