Skip to main content

Advertisement

Log in

Rat chemokine CXCL11: Structure, tissue distribution, function and expression in cardiac transplantation models

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CXCL11 is thought to play a critical role in allograft rejection. To clarify the role of CXCL11 in the rat transplantation model, we cloned CXCL11 cDNA from rat liver tissue and used it to study CXCL11 structure, function and expression. The rat CXCL11 gene encodes a protein of 100 amino acids and spans approximately a 2.8 kb DNA segment containing 4 exons in the protein coding region. Tissue distribution of rat CXCL11 was analyzed by quantitative RT-PCR and showed that rat CXCL11 mRNA is expressed in various tissues and, in particular, at high levels in the spleen and lymph nodes. COS-1 cells were transfected with a plasmid vector encoding rat CXCL11 and used to study CXCL11 effects on cell migration and internalization of CXCR3, the CXCL11 receptor. The recombinant CXCL11 showed chemotactic properties and induced CXCR3 internalization in CD4+ T cells. Expression of CXCL11 mRNA also was measured in rat acute (ACI to LEW) and chronic (LEW to F344) heart transplant rejection models. CXCL11 mRNA expression in allografts increased in both models, compared with controls, and was primarily observed in infiltrating macrophages and donor endothelial cells. These results indicate that, like the other CXCR3 chemokines, rat CXCL11 seems to have a role in the homing of CD4+ T cells in both acute and chronic rejection models of heart allotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cDNA:

DNA complementary to RNA

IFN:

interferon

PTX:

pertussis toxin

GAPDH:

glyceraldehydes-3-phosphate dehydrogenase

PCR:

polymerase chain reaction

References

  1. Rossi D, Zlotnik A: The biology of chemokines and their receptors. Annu Rev Immunol 18: 217–242, 2000

    Article  PubMed  CAS  Google Scholar 

  2. Mellado M, Rodriguez-Frade JM, Manes S, Martinez AC: Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19: 397–421, 2001

    Article  PubMed  CAS  Google Scholar 

  3. Proudfoot AE: Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2: 106–115, 2002

    Article  PubMed  CAS  Google Scholar 

  4. Sallusto F, Mackay CR, Lanzavecchia A: The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 18: 593–620, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Hancock WW, Gao W, Faia KL, Csizmadia V: Chemokine and their receptors in allograft rejection. Curr Opin Immunol 12: 511–516, 2000

    Article  PubMed  CAS  Google Scholar 

  6. El-Sawy T, Fahmy NM, Fairchild RL: Chemokines: directing leukocyte infiltration into allografts. Curr Opin Immunol 14: 562–568, 2002

    Article  PubMed  CAS  Google Scholar 

  7. Duquesnoy RJ, Demetris AJ: Immunopathology of cardiac transplant rejection. Curr Opin Cardiol 10: 193–206, 1995

    Article  PubMed  CAS  Google Scholar 

  8. DeVries ME, Ran L, Kelvin DJ: On the edge: the physiological and pathophysiological role of chemokine during inflammatory and immunological responses. Semm Immunol 11: 95–104, 1999

    Article  CAS  Google Scholar 

  9. Nelson PJ, Krensky AM: Chemokines, chemokine receptors, and allograft rejection. Immunity 14: 377–386, 2001

    Article  PubMed  CAS  Google Scholar 

  10. Sallusto F, Kremmer E, Palermo B, Hoy A, Ponath P, Qin S, Forster R, Lipp M, Lanzavecchia A: Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol 29: 2037–2045, 1999

    Article  PubMed  CAS  Google Scholar 

  11. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F: Differential} expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187: 129–134, 1998

    Article  PubMed  CAS  Google Scholar 

  12. Widney DP, Xia YR, Lusis AJ, Smith JB: The murine chemokine CXCL11 (IFN-inducible T cell alpha chemoattractant) is an IFN-γ- and lipopolysaccharide- inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia. J Immunol 164: 6322–6331, 2000

    PubMed  CAS  Google Scholar 

  13. Zhang Y, Luxon BA, Casola A, Carofalo RP, Jamaluddin M, Brasier AR: Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cDNA microarrays. J Virol 75: 9044–9058, 2001

    Article  PubMed  CAS  Google Scholar 

  14. Flier J, Boorsma DM, van Beek PJ, Nieboer C, Stoof TJ, Willemze R, Tensen CP: Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J Pathol 194: 398–405, 2001

    Article  PubMed  CAS  Google Scholar 

  15. Singh UP, Singh S, Iqbal N, Weaver CT, McGhee JR, Lillard JW Jr: IFN-gamma-inducible chemokines enhance adaptive immunity and colitis. J Interferon Cytokine Res 23: 591–600, 2003

    Article  PubMed  CAS  Google Scholar 

  16. Nance S, Cross R, Fitzpatrick E: Chemokine production during hypersensitivity pneumonitis. Eur J Immunol 34: 677–685, 2004

    Article  PubMed  CAS  Google Scholar 

  17. Zhao DX, Hu Y, Miller GG, Luster AD, Mitchell RN, Libby P: Differential expression of the IFN-gamma-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell alpha chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J Immunol 169: 1556–1560, 2002

    PubMed  CAS  Google Scholar 

  18. Lazzeri E, Lasagni L, Serio M, Romagnani S, Romagnani P: Cytokines and chemokines in nephropathies and renal transplant. G Ital Nefrol 19: 641–649, 2002

    PubMed  CAS  Google Scholar 

  19. Belperio JA, Keane MP, Burdick MD, Lynch JP 3rd, Xue YY, Li K, Ross DJ, Strieter RM: Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J Immunol 169: 1037–1049, 2002

    PubMed  CAS  Google Scholar 

  20. Hancock WW, Wang L, Ye Q, Han R, Lee I: Chemokines and their receptors as markers of allograft rejection and targets for immunosuppression. Curr Opin Immunol 15: 479–486, 2003

    Article  PubMed  CAS  Google Scholar 

  21. Mitsuhashi N, Kearns-Jonker M, Wu GD, Bowdish ME, Jin YS, Mencel R, Zahorsky-Reeves J, Fischer-Lougheed J, Weinberg KI, Starnes VA, Cramer DV: Identification, functional analysis and expression in a heterotopic heart transplant model of CXCL9 in the rat. Immunology 112: 87–93, 2004

    Article  PubMed  CAS  Google Scholar 

  22. Cramer DV, Chapman FA, Jaffee B, Jones EA, Makowka L: Inhibition of the pyrimidine biosynthetic pathway with S-8660, an analogue of brequinar sodium, prolongs cardiac allograft survival in rats. J Heart Lung Transplant 12: 140–146, 1993

    PubMed  CAS  Google Scholar 

  23. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K: Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187: 2009–2021, 1998

    Article  PubMed  CAS  Google Scholar 

  24. Laich A, Meyer M, Werner ER, Werner-Felmayer G: Structure and expression of the human small cytokine B subfamily member 11 (SCYB11/formerly SCYB9B, alias I-TAC) gene cloned from IFN-γ-treated human monocytes (THP-1). J Interferon Cytokine Res 19: 505–513, 1999

    Article  PubMed  CAS  Google Scholar 

  25. Meyer M, Erdel M, Duba HC, Werner ER, Werner-Felmayer G: Cloning, genomic sequence, and chromosome mapping of Scyb11, the murine homologue of SCYB11 (aliasβR1/H174/SCYB9B/I-TAC/IP-9/CXCL11). Cytogenet Cell Genet 88: 278–282, 2000

    Article  PubMed  CAS  Google Scholar 

  26. Breathnach R, Chambon P: Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50: 349–383, 1981

    Article  PubMed  CAS  Google Scholar 

  27. Meyer M, Hensbergen PJ, van der Raaij-Helmer EM, Brandacher G, Margreiter R, Heufler C, Koch F, Narumi S, Werner ER, Colvin R, Luster AD, Tensen CP, Werner-Felmayer G: Cross reactivity of three T cell attracting murine chemokines stimulating the CXC chemokine receptor CXCR3 and their induction in cultured cells and during allograft rejection. Eur J Immunol 31: 2521–2527, 2001

    Article  PubMed  CAS  Google Scholar 

  28. Amara A, Gall SL, Schwartz O, Salamero J, Montes M, Loetscher P, Baggiolini M, Virelizier JL, Arenzana-Seisdedos F: HIV coreceptor downregulation as antiviral principle: SDF-1α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 186: 139–146, 1997

    Article  PubMed  CAS  Google Scholar 

  29. Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, Signoret N, Marsh M, Stangassinger M, Borlat F, Wells TN, Schlondorff D, Proudfoot AE: Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 187: 1215–1224, 1998

    Article  PubMed  CAS  Google Scholar 

  30. Mohan K, Ding Z, Hanly J, Issekutz TB: IFN-γ-inducible T cell α chemoattractant is a potent stimulator of normal human blood T lymphocyte transendothelial migration: differential regulation by IFN-γ and TNF-α. J Immunol 168: 6420–6438, 2002

    PubMed  CAS  Google Scholar 

  31. McColl SR, Mahalingam S, Staykova M, Tylaska LA, Fisher KE, Strick CA, Gladue RP, Neote KS, Willenborg DO: Expression of rat I-TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands. Lab Invest 84: 1418–1429, 2004

    Article  PubMed  CAS  Google Scholar 

  32. Nomiyama H, Mera A, Ohneda O, Miura R, Suda T, Yoshie O: Organization of the chemokine genes in the human and mouse major clusters of CC and CXC chemokines: diversification between the two species. Genes Immun 2: 110–113, 2001

    Article  PubMed  CAS  Google Scholar 

  33. Rat Genome Sequencing Project Consortium, Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521, 2004

    Google Scholar 

  34. Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P, Luster AD: Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest 104: 1041–1050, 1999

    PubMed  CAS  Google Scholar 

  35. Cox MA, Jenh CH, Gonsiorek W, Fine J, Narula SK, Zavodny PJ, Hipkin RW: Human interferon-inducible 10-kDa protein and human interferon-inducible T cell α chemoattractant are allotropic ligands for human CXCR3: differntial binding to receptor states. Mol Pharmacol 59: 707–715, 2001

    Google Scholar 

  36. Xanthou G, Williams TJ, Pease JE: Molecular chatacterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. Eur J Immunol 33: 2927–2936, 2003

    Article  PubMed  CAS  Google Scholar 

  37. Yamamoto J, Adachi Y, Onoue Y, Adachi YS, Okabe Y, Itazawa T, Toyoda M, Seki T, Morohashi M, Matsushima K, Miyawaki T: Differential expression of the chemokine receptors by the Th1-and Th2-type effector populations within circulating CD4+ T cells. J Leukoc Biol 68: 568–574, 2000

    PubMed  CAS  Google Scholar 

  38. Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, Uguccioni M, Galli G, Cosmi L, Maurenzig L, Baggiolini M, Maggi E, Romagnani S, Serio M: Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107: 53–63, 2001

    Article  PubMed  CAS  Google Scholar 

  39. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P: An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197: 1537–1549, 2003

    Article  PubMed  CAS  Google Scholar 

  40. DeVries ME, Hosiawa KA, Cameron CM, Bosinger SE, Persad D, Kelvin AA, Coombs JC, Wang H, Zhong R, Cameron MJ, Kelvin DJ: The role of chemokines and chemokine receptors in alloantigen-independent and alloantigen-dependent transplantation injury. Semin Immunol 15: 33–48, 2003

    Article  PubMed  CAS  Google Scholar 

  41. Hancock WW, Lu B, Gao W, Csizmadia V, Faia K, King JA, Smiley ST, Ling M, Gerard NP, Gerard C: Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 192: 1515–1520, 2000

    Article  PubMed  CAS  Google Scholar 

  42. Miura M, Morita K, Kobayashi H, Hamilton TA, Burdick MD, Strieter RM, Fairchild RL: Monokine induced by IFN-γ is a dominant factor directing T cells into murine cardiac allografts during acute rejection. J Immunol 167: 3494–3504, 2001

    PubMed  CAS  Google Scholar 

  43. Jiankuo M, Xingbing W, Baojun H, Xiongwin W, Xhuoya L, Ping X, Yong X, Anting L, Chunsong H, Feili G, Jinquan T: Peptide nucleic acid antisense prolongs skin allograft survival by means of blockade of CXCR3 expression directing T cells into graft. J Immunol 170: 1556–1565, 2003

    PubMed  Google Scholar 

  44. Fahmy NM, Yamani MH, Starling RC, Ratliff NB, Young JB, McCarthy PM, Feng J, Novick AC, Fairchild RL: Chemokine and chemokine receptor gene expression indicates acute rejection of human cardiac transplants. Transplantation 75: 72–78, 2003

    Article  PubMed  CAS  Google Scholar 

  45. Huang D, Han Y, Rani MR, Glabinski A, Trebst C, Sorensen T, Tani M, Wang J, Chien P, O'Bryan S, Bielecki B, Zhou ZL, Majumder S, Ransohoff RM: Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and equisite regulation. Immunol Rev 177: 52–67, 2000

    Article  PubMed  CAS  Google Scholar 

  46. Marx N, Mach F, Sauty A, Leung JH, Sarafi MN, Ransohoff RM, Libby P, Plutzky J, Luster AD: Peroxisome proliferators-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 164: 6503–6508, 2000

    PubMed  CAS  Google Scholar 

  47. Proost P, Verpoest S, Van De Borne K, Schutyser E, Struyf S, Put W, Ronsse I, Grillet B, Opdenakker G, Van Damme J: Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-gamma in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. J Leukoc Biol 75: 777–784, 2004

    Article  PubMed  CAS  Google Scholar 

  48. Carr A, Samaras K, Chisholm DJ, Cooper DA: Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 351: 1881–1883, 1998

    Article  PubMed  CAS  Google Scholar 

  49. Kopp EB, Medzhitov R: The Toll-receptor family and control of innate immunity. Curr Opin Immunol 11: 13–18, 1999

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Mitsuhashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsuhashi, N., Wu, G.D., Zhu, H. et al. Rat chemokine CXCL11: Structure, tissue distribution, function and expression in cardiac transplantation models. Mol Cell Biochem 296, 1–9 (2007). https://doi.org/10.1007/s11010-005-9010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9010-9

Keywords

Navigation