Skip to main content
Log in

Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Yeast, Saccharomyces cerevisiae, exposed to CdCl2 for 17 h was analysed with reference to survival, MTs and oxidative stress biomarkers. An enhanced accumulation of MDA and the increased activities of SOD and GPx in the Cd-treated yeasts under aerobic condition indicated CdCl2-caused oxidative stress in S. cerevisiae. MTs were significantly induced by CdCl2 under aerobic condition and the induced MTs contents were positively correlated with the accumulation of MDA in this study. However, MTs induction can be prominently inhibited by coincubation with NAC or anaerobic culture via eliminating ROS. This oxidative stress reduction was reflected by the decreases in MDA level and SOD and GPx activities. The results suggest that MTs inductive activity of cadmium in yeast cells was mediated by oxidative stress. In addition, increase of MTs contents was observed in cells untreated with CdCl2 under anaerobic conditions or coincubation with NAC, suggesting MTs are also susceptive to reductive stress. (Mol Cell Biochem xxx: 139–145, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cd:

cadmium

MTs:

meyallothioneins

ROS:

reactive oxygen species

NAC:

N-acetylcysteine

SOD:

superoxide dismutase

CAT:

catalas

GPx:

glutathione peroxidase

MDA:

malondialdehyde

TBARS:

thiobarbituric acid reactive substance

PMSF:

phenymethylsulphonylfluroride

DTNB:

5, 5-dithiobis-2-nitrobenzoic acid

BSA:

bovine serum albumin

OD:

optical density

MREs:

metal response elements; MTF-1, metal transcription factor-1; YPD, yeast peptone dextrose; IMCAS, Institute of Microbiology, Chinese Academy of Sciences

References

  1. Nriagu JO, Pacyna JM: Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature 333: 134–139, 1988

    Article  PubMed  CAS  Google Scholar 

  2. Hendry GAF, Baker AJM, Ewart CF: Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus. Acta Bot Neerl 41: 271–281, 1992

    CAS  Google Scholar 

  3. Hamer DH: Metallothionein. Annu Rev Biochem 55: 913–951, 1986

    PubMed  CAS  Google Scholar 

  4. Wong CKC, Yeung HY, Cheung RYH, Yung KKL, Wong MH: Ecotoxicological assessment of persistent organic and heavy metal contamination in Hong Kong coastal sediment. Arch Environ Contam Toxicol 38: 486–493, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Kagi JHR: Overview of metallothionein. Methods Enzymol 205: 613–626, 1991

    PubMed  CAS  Google Scholar 

  6. Bauman JW, Liu J, Liu YP, Klaassen CD: Increase in metallothionein produced by chemicals that induce oxidative stress. Toxicol Appl Pharmacol 110: 347–354, 1991

    Article  PubMed  CAS  Google Scholar 

  7. Hidalgo J, Campany L, Borras M, Garvey JS, Armario A: Metallothionein response to stress in rats: role in free radical scavenging. Am J Physiol 255: 518–524, 1988

    Google Scholar 

  8. Palmiter RD: The elusive function of metallothioneins. Proc Natl Acad Sci USA 95: 8428–8430, 1998

    Article  PubMed  CAS  Google Scholar 

  9. Strouhal M, Kizek R, Vacck J, Trnkova L, Ncmcc M: Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectrochemistry 60: 29–36, 2003

    Article  PubMed  CAS  Google Scholar 

  10. Vranova E, Inze D, Van Breusegem F: Signal transduction during oxidative stress. J Exp Bot 53: 1227–1236, 2002

    Article  PubMed  CAS  Google Scholar 

  11. Brennan RJ, Schiestl RH: Cadmium is an inducer of oxidative stress in yeast. Mutat Res 356: 171–178, 1996

    PubMed  CAS  Google Scholar 

  12. Prohaska J: Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice. J Nutr 113: 2048–2058, 1983

    PubMed  CAS  Google Scholar 

  13. Claiborne A: Catalase activity. In: R.A. Greenwald (ed), CRC: Handbook of Methods in Oxygen Radical Research. CRC Press Inc, Boca Raton, FL, pp. 283–284, 1985

    Google Scholar 

  14. Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S: Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta 1523: 37–48, 2000

    Google Scholar 

  15. Rong Z, Liu H, Bao J, Chen H, Sun Y, Sun C: Direct micro determination of Glutathione peroxidase activity in mice blood. Prog Biochem Biophys (China) 21: 362–366, 1994

    CAS  Google Scholar 

  16. Ohkawa H, Ohishi N, Tagi K: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Chem 95: 351–358, 1979

    CAS  Google Scholar 

  17. Viarengo A, Ponzano E, Dondero F, Fabbri R: A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 44: 69–84, 1997

    CAS  Google Scholar 

  18. Bradford MA: Rapid and sensitive method for microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Article  PubMed  CAS  Google Scholar 

  19. Aruoma OI, Halliwell B, Hoey BM, Butler J: The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6: 593–597, 1989

    Article  PubMed  CAS  Google Scholar 

  20. Stochs SJ, Bagchi D: Oxidative mechanism in the toxicity of metal ions. Free Radic Biol Med 18: 321–336, 1995

    Google Scholar 

  21. Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E: Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean Phaseolus vulgaris L. Plant Sci 127: 139–147, 1997

    Article  CAS  Google Scholar 

  22. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A: Cadmium-induced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiol 127: 887–892, 2001

    PubMed  Google Scholar 

  23. Howlett NG, Avery SV: Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Envir Microbiol 63: 2971–2976, 1997

    CAS  Google Scholar 

  24. Kono Y, Fridovich I: Superoxide radical inhibits catalase. J Biol Chem 257: 5751–5754, 1982

    PubMed  CAS  Google Scholar 

  25. Templeton DM, Cherian MG: Toxicological significance of metallothionein. Methods Enzymol 205: 11–24, 1991

    PubMed  CAS  Google Scholar 

  26. Kumari MVR, Hiramatsu M, Ebadi M: Free radical scavenging actions of metallothionein isoforms I and II. Free Radic Res 29: 93–101, 1998

    PubMed  CAS  Google Scholar 

  27. Schwarz MA, Lazo JS, Yalowich JC, Reynolds I, Kagan VE, Tyurin V, Kim YM, Watkins SC, Pitt BR: Cytoplasmic metallothionein overexpression protects NIH 3T3 cells from tert-butyl hydroperoxide toxicity. J Biol Chem 269: 15238–15243, 1994

    PubMed  CAS  Google Scholar 

  28. Mimura T, Tsujikawa K, Yasuda N, Nakajima H, Haruyama M, Ohmura T, Okabe M: Suppression of gastric ulcer induced by stress and HCL-ethanol by intravenously administered metallothionein-II. Biochem Biophys Res Commun 151: 725–729, 1988

    Article  PubMed  CAS  Google Scholar 

  29. Kiningham K, Kasarskis E: Antioxidant function of metallothioneins. J Trace Elem Exp Med 11: 219–226, 1998

    Article  CAS  Google Scholar 

  30. Hermes-Lima M, Storey KB: Relationship between anoxia exposure and antioxidant status in the frog Rana pipiens. Am J Physiol Regulatory Integrative Comp Physiol 271: R918–R925, 1996

    CAS  Google Scholar 

  31. Hermes-Lima M, Storey KB: Role of antioxidants in the tolerance of freezing and anoxia by garter snakes. Am J Physiol Regulatory Integrative Comp Physiol 34: R646–R652, 1993

    Google Scholar 

  32. Raleigh JA, Chou S-C, Tables L, Suchindran S, Varia MA, Horsman MR: Relationship of hypoxia to metallothionein expression in murine tumours. Int J Radiat Oncol Biol Phys 42: 727–730, 1998

    PubMed  CAS  Google Scholar 

  33. Murphy BJ, Andrews GK, Bittel D, Discher DJ, McCue J, Green GJ, Yanovsky M, Giaccia A, Sutherland RM, Laderoute KR, Webster KA: Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res 59: 1315–1322, 1999

    PubMed  CAS  Google Scholar 

  34. LaRochelle O, Gagné V, Charron J, Soh JW, Séguin C: Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 276: 41879–41888, 2001

    Article  PubMed  CAS  Google Scholar 

  35. Gutteridge JMC, Mitchell J: Redox imbalance in the critically ill. Br Med Bull 55: 49–75, 1999

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingmei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhang, Y., Huang, D. et al. Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol Cell Biochem 280, 139–145 (2005). https://doi.org/10.1007/s11010-005-8541-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8541-4

Keyword

Navigation