Skip to main content

Advertisement

Log in

A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The sodium-dependent D-glucose transporter (SGLT) family is involved in glucose uptake via intestinal absorption (SGLT1) or renal reabsorption (SGLT1 and SGLT2). Current methods for the screening of inhibitors of SGLT transporters are complex, expensive and very labor intensive, and have not been applied to human SGLT transporters. The purpose of the present study was to develop an alternative 96-well automated method to study the activity of human SGLT1 and SGLT2. Chinese hamster ovary (CHO) Flp-In cells were stably transfected with pcDNA5-SGLT1 or pcDNA5-SGLT2 plasmid and maintained in hygromycin-selection Ham's F12 culture medium until hygromycin-resistant clones were developed. SGLT1 and SGLT2 gene expression was evaluated by relative real-time reverse transcription-polymerase chain reaction (RT-PCR) quantification, Western blotting, and immunocytochemical analysis. The clones with higher expression of SGLT1 and SGLT2 were used for transport studies using [14C]-methyl-α-D-glucopyranoside ([14C]AMG). The advantage of using the 96-well format is the low amount of radioactive compounds and inhibitory substances required, and its ability to establish reproducibility because repetition into the assay. This method represents an initial approach in the development of transport-based high-throughput screening in the search for inhibitors of glucose transport. The proposed method can easily be performed to yield quantitative data regarding key aspects of glucose membrane transport and kinetic studies of potential inhibitors of human SGLT1 and SGLT2. (Mol Cell Biochem xxx: 91–98, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood IS, Trayhurn P: Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89: 3–9, 2003

    PubMed  CAS  Google Scholar 

  2. Wright EM, Loo DD, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Mackenzie B, Boorer K, Zampighi G: ‘Active’ sugar transport in eukaryotes. J Exp Biol 196: 197–212, 1994

    PubMed  CAS  Google Scholar 

  3. Wright E, Hirsch J, Loo D, Zampighi G: Regulation of Na+/glucose cotransporters. J Exp Biol 200: 287–293, 1997

    PubMed  CAS  Google Scholar 

  4. Wright EM: Renal Na(+)-glucose cotransporters. Am J Physiol 280: F10–F18, 2001

    CAS  Google Scholar 

  5. Diez-Sampedro A, Wright EM, Hirayama BA: Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter. J Biol Chem 276: 49188–49194, 2001

    Article  PubMed  CAS  Google Scholar 

  6. Brot-Laroche E, Supplisson S, Delhomme B, Alcalde AI, Alvarado F: Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-d-glucopyranoside. Biochim Biophys Acta 904: 71–80, 1987

    PubMed  CAS  Google Scholar 

  7. Parent L, Supplisson S, Loo DD, Wright EM: Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Memb Biol 125: 49–62, 1992

    CAS  Google Scholar 

  8. Kimmich GA, Randles J: alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium. Am J Physiol 241: C227–C232, 1981

    PubMed  CAS  Google Scholar 

  9. Sakhrani LM, Badie-Dezfooly B, Trizna W, Mikhail N, Lowe AG, Taub M, Fine LG: Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am J Physiol 246: F757–764, 1984

    PubMed  CAS  Google Scholar 

  10. Amos AF, McCarty DJ, Zimmet P: The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med 14(suppl 5): S1–S85, 1997

    PubMed  Google Scholar 

  11. King H, Aubert RE, Herman WH: Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21: 1414–1431, 1998

    PubMed  CAS  Google Scholar 

  12. Van Gaal LF, De Leeuw IH: Rationale and options for combination therapy in the treatment of Type 2 diabetes. Diabetologia 46(suppl 1): M44–M50, 2003

    PubMed  CAS  Google Scholar 

  13. O'Gorman S, Fox DT, Wahl GM: Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355, 1991

    PubMed  Google Scholar 

  14. Sauer B: Site-specific recombination: developments and applications. Curr Opin Biotechnol 5: 521–527, 1994

    Article  PubMed  CAS  Google Scholar 

  15. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45, 2001

    Article  PubMed  CAS  Google Scholar 

  16. Stoscheck CM: Quantitation of protein. Methods Enzymol 182: 50–68, 1990

    PubMed  CAS  Google Scholar 

  17. Lin JT, Kormanec J, Wehner F, Wielert-Badt S, Kinne RK: High-level expression of Na+/D-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line. Biochim Biophys Acta 1373: 309–320, 1998

    PubMed  CAS  Google Scholar 

  18. Burlingham BT, Widlanski TS: An intuitive look at the relationship of Ki and IC50: a more general use for the Dixon plot. J Chem Educ 80: 214–218, 2003

    Article  CAS  Google Scholar 

  19. Hirayama BA, Lostao MP, Panayotova-Heiermann M, Loo DD, Turk E, Wright EM: Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1). Am J Physiol 270: G919–G926, 1996

    PubMed  CAS  Google Scholar 

  20. Lin J-T, Kormanec J, Homerová D, Kinne RKH: Probing transmembrane topology of the high-affinity sodium/glucose cotransporter (SGLT1) with histidine-tagged mutants. J Memb Biol 170: 243–252, 1999

    CAS  Google Scholar 

  21. Walgren RA, Lin JT, Kinne RKH, Walle T: Cellular uptake of dietary flavonoid quercetin 4′-beta-glucoside by sodium-dependent glucose transporter SGLT1. J Pharmacol Exp Ther 294: 837–843, 2000

    PubMed  CAS  Google Scholar 

  22. Tsujihara K, Hongu M, Saito K, Inamasu M, Arakawa K, Oku A, Matsumoto M: Na(+)-glucose cotransporter inhibitors as antidiabetics: I. Synthesis and pharmacological properties of 4′-dehydroxyphlorizin derivatives based on a new concept. Chem Pharm Bull 44: 1174–1180, 1996

    PubMed  CAS  Google Scholar 

  23. Hongu M, Tanaka T, Funami N, Saito K, Arakawa K, Matsumoto M, Tsujihara K: Na(+)-glucose cotransporter inhibitors as antidiabetic agents: II. Synthesis and structure–activity relationships of 4′-dehydroxyphlorizin derivatives. Chem Pharm Bull 46: 22–33, 1998

    PubMed  CAS  Google Scholar 

  24. Hongu M, Funami N, Takahashi Y, Saito K, Arakawa K, Matsumoto M, Yamakita H, Tsujihara K: Na(+)-glucose cotransporter inhibitors as antidiabetic agents: III. Synthesis and pharmacological properties of 4′-dehydroxyphlorizin derivatives modified at the OH groups of the glucose moiety. Chem Pharm Bull 46: 1545–1555, 1998

    PubMed  CAS  Google Scholar 

  25. Tsujihara K, Hongu M, Saito K, Kawanishi H, Kuriyama K, Matsumoto M, Oku A, Ueta K, Tsuda M, Saito A: Na(+)-glucose cotransporter (SGLT) inhibitors as antidiabetic agents: 4. Synthesis and pharmacological properties of 4′-dehydroxyphlorizin derivatives substituted on the B ring. J Med Chem 42: 5311–5324, 1999

    Article  PubMed  CAS  Google Scholar 

  26. Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T, Kanai Y, Endou H: T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48: 1794–1800, 1999

    PubMed  CAS  Google Scholar 

  27. Oku A, Ueta K, Nawano M, Arakawa K, Kano-Ishihara T, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T: Antidiabetic effect of T-1095, an inhibitor of Na(+)-glucose cotransporter, in neonatally streptozotocin-treated rats. Eur J Pharmacol 391: 183–192, 2000

    Article  PubMed  CAS  Google Scholar 

  28. Oku A, Ueta K, Arakawa K, Kano-Ishihara T, Matsumoto M, Adachi T, Yasuda K, Tsuda K, Saito A: Antihyperglycemic effect of T-1095 via inhibition of renal Na+-glucose cotransporters in streptozotocin-induced diabetic rats. Biol Pharm Bull 23: 1434–1437, 2000

    PubMed  CAS  Google Scholar 

  29. Arakawa K, Ishihara T, Oku A, Nawano M, Ueta K, Kitamura K, Matsumoto M, Saito A: Improved diabetic syndrome in C57BL/KsJ-db/db mice by oral administration of the Na(+)-glucose cotransporter inhibitor T-1095. Br J Pharmacol 132: 578–586, 2001

    Article  PubMed  CAS  Google Scholar 

  30. Wagman AS, Nuss JM: Current therapies and emerging targets for the treatment of diabetes. Curr Pharm Des 7: 417–450, 2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Castaneda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaneda, F., Kinne, R.KH. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Mol Cell Biochem 280, 91–98 (2005). https://doi.org/10.1007/s11010-005-8235-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8235-y

Keyword

Navigation