Skip to main content
Log in

Age-associated deficit of mitochondrial oxidative phosphorylation in skeletal muscle: Role of carnitine and lipoic acid

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondrial damage has implicated a major contributor for ageing process. In the present study, we measured mitochondrial membrane swelling, mitochondrial respiration (state 3 and 4) by using oxygen electrode in skeletal muscle of young (3–4 months old) and aged rats (above 24 months old) with supplementation of l-carnitine and dl-α-lipoic acid. Our results shows that the mitochondrial membrane swelling and state 4 respiration were increased more in skeletal muscle mitochondria of aged rats than in young control rats, whereas the state 3 respiration, respiratory control ratio (RCR) and ADP:O ratio decreased more in aged rats than in young rats. After supplementation of carnitine and lipoic acid to aged rats for 30 days, the state 3 respiration and RCR were increased, whereas the state 4 and mitochondrial membrane swelling were decreased to near normal rats. From our results, we conclude that combined supplementation of carnitine and lipoic acids to aged rats increases the skeletal muscle mitochondrial respiration, thereby increasing the level of ATP. (Mol Cell Biochem xxx: 83–89, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harman D: Ageing: a theory based on free radical and radiation chemistry. J Gerontol 11: 298–300, 1956

    PubMed  CAS  Google Scholar 

  2. Miquel J, Economos AC, Fleming A, Johnson JE: Mitochondrial role in cell ageing. Exp Gerontol 15: 575–591, 1980

    Article  PubMed  CAS  Google Scholar 

  3. Sohal RS: Role of oxidative stress and protein oxidation in the ageing process. Free Radical Biol Med 33: 37–44, 2002

    CAS  Google Scholar 

  4. Bieber LL, Choi YR: Isolation and identification of aliphatic short chain acylcarnitine from beef heart: possible role for carnitine in branched chain amino acid metabolism. Proc Natl Acad Sci USA 74: 2795–2798, 1977

    PubMed  CAS  Google Scholar 

  5. Rebouche CJ: Carnitine function and requirement during the life cycle. FASEB J 6: 3379–3386, 1992

    PubMed  CAS  Google Scholar 

  6. Iossa S, Mollica MP, Lionetti L, Crescenzo R, Botta M, Barletta A, Liverini G: Acetyl-l-carnitine supplementation differently influences nutrient partitioning, serum leptin concentration and skeletal muscle mitochondrial respiration in young and old rats. J Nutr 132: 636–642, 2002

    PubMed  CAS  Google Scholar 

  7. Taglialatela G, Gegg M, Perez-Polo JR, Williams LR, Rose GM: Evidence for DNA fragmentation in the CNS of aged Fischer-344 rats. Neuroreport 7: 977–980, 1996

    PubMed  CAS  Google Scholar 

  8. Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT, Vinarsky V, Bartholomew JC, Ames BN: Feeding acetyl-l-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA 99: 1870–1875, 2002

    Article  PubMed  CAS  Google Scholar 

  9. Ernster L, Nordenbrand K: Skeletal muscle mitochondria. Methods Enzymol 10: 86–94, 1967

    CAS  Google Scholar 

  10. Slater EC, Bonner WD: The effect of fluoride on succinate oxidase system. Biochem J 52: 185–196, 1952

    PubMed  CAS  Google Scholar 

  11. Lowry OH, Rosebrough NJ, Farr AI, Randall RJ: Protein measurement with Folin-phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  12. Chance B: In: G.E. Wolstenholme and C.M. O' Coner (eds). Ciba Foundation Symposium on Regulation of Calcium Metabolism, J&A, Churcill Ltd., London, 1959, pp 91–128

  13. Lehninger AL: Reversal of various types of mitochondrial swelling by ATP. J Biol Chem 234: 2465–2471, 1959

    PubMed  CAS  Google Scholar 

  14. Korzeniewski B, Froncisz W: Theoretical studies on the control of the oxidative phosphorylation system. Biochim Biophys Acta 1102: 67–75, 1992

    PubMed  CAS  Google Scholar 

  15. Huang H, Manton KG: The role of oxidative damage in mitochondria during ageing: a review. Front Biosci 9: 1100–1117, 2004

    PubMed  CAS  Google Scholar 

  16. Cardellach F, Galofre J, Cusso R, Urbano-Marquez A: Decline in skeletal muscle mitochondrial respiratory chain function with ageing. Lancet 2: 44–45, 1989

    PubMed  CAS  Google Scholar 

  17. Lal SB, Ramsey JJ, Monemdjou S, Weindruch R, Harper ME: Effect of caloric restriction on skeletal muscle mitochondrial proton leak in ageing rats. J Gerontol 56: B116–B122, 2001

    CAS  Google Scholar 

  18. Gottlieb RA: Mitochondria and apoptosis. Biol Signals Recept 10: 147–161, 2001

    Article  PubMed  CAS  Google Scholar 

  19. Genova ML, Pich MM, Bernacchia A, Bianchi C, Biondi A, Bovina C, Falasca AI, Formiggini G, Castelli GP, Lenaz G: The mitochondrial production of reactive oxygen species in relation to ageing and pathology. Ann NY Acad Sci 1011: 86–100, 2004

    PubMed  CAS  Google Scholar 

  20. Saris NE, Erikkson KO: Mitochondrial dysfunction in ischaemia reperfusion. Acta Anaesthesiol Scand Suppl 107: 171–176, 1995

    PubMed  CAS  Google Scholar 

  21. Evans AM, Fornasini G: Pharmacokinetics of l-carnitine. Clin Pharmacokinet 42: 941–967, 2003

    PubMed  CAS  Google Scholar 

  22. Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB: (R)-alpha-Lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J 13: 411–418, 1999

    PubMed  CAS  Google Scholar 

  23. Kumaran S, Subathra M, Balu M, Panneerselvam C: Age-associated decreased activities of mitochondrial electron transport chain complexes in heart and skeletal muscle: role of l-carnitine. Chemico Biol Interact 148: 11–18, 2004

    CAS  Google Scholar 

  24. Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT, Vinarsky V, Bartholomew JC, Ames BN: Feeding acetyl-l-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA 99: 1870–1875, 2002

    Article  PubMed  CAS  Google Scholar 

  25. Streeper RS, Henriksen EJ, Jacob S, Hokama JG, Fogt DL, Tristschler HJ: Differential effects of lipoic acid steroisomer on glucose metabolism in insulin resistant skeletal muscle. Am J Physiol 273: E185–E191, 1997

    PubMed  CAS  Google Scholar 

  26. Zimmer G, Mainka L, Kruger E: Dihydrolipoic acid activates oligomycin sensitive thiol groups and increase ATP synthesis in mitochondria. Arch Biochem Biophys 288: 609–613, 1991

    Article  PubMed  CAS  Google Scholar 

  27. Zoratti M, Szabo I: The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176, 1995

    PubMed  Google Scholar 

  28. Gunter T, Pfeiffer D: Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–C786, 1990

    PubMed  CAS  Google Scholar 

  29. Schild L, Keilhoff G, Augustin W, Reiser G, Striggow F: Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. FASEB J 15: 565–567, 2001

    PubMed  CAS  Google Scholar 

  30. Kakkar P, Mehrotra S, Viswanathan PN: Influence of antioxidants on the peroxidative swelling of mitochondria in vitro. Cell Biol Toxicol 14: 313–321, 1998

    Article  PubMed  CAS  Google Scholar 

  31. Geetha A: Influence of alpha-tocopherol on doxorubicin-induced lipid peroxidation, swelling and thiol depletion in rat heart mitochondria. Ind J Exp Biol 31: 297–298, 1993

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Panneerselvam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumaran, S., Panneerselvam, K.S., Shila, S. et al. Age-associated deficit of mitochondrial oxidative phosphorylation in skeletal muscle: Role of carnitine and lipoic acid. Mol Cell Biochem 280, 83–89 (2005). https://doi.org/10.1007/s11010-005-8234-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-8234-z

Keyword

Navigation