Skip to main content

Advertisement

Log in

Developmental changes in the neuronal protein composition: A study by high resolution 2D-gel electrophoresis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cerebellar granular neurons were grown in culture up to 21 days and the protein compositions of undifferentiated (day 1), partially differentiated (day 7) and fully differentiated (day 21) neurons were analyzed by high-resolution 2D-gel electrophoresis. During neuronal differentiation there were not only increase in the amount of several known proteins, viz. actin, tubulin (both α and β subunits), myosin (heavy and light chains), but very interesting changes were also observed in the expressions of different subunits and isoforms of those proteins. Furthermore, both in the acidic (pI 4.0–4.5) and alkaline (pI 7.0–8.5) regions interesting up and down regulations of several unidentified proteins were observed during the neuronal differentiation. These results indicated that there were several unidentified proteins that might be very valuable targets for studying regulation of neuronal differentiation. Research is going on for further characterization of those proteins using recently developed proteomics technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albright TD, Jessell TM, Kandel ER, Posner MI: Neural science: A century of progress and the mysteries that remain. Cell 100 (Rev Suppl): S1–S55, 2000

    Article  CAS  PubMed  Google Scholar 

  2. Shooter EM, Einstein ER: Proteins of nervous system. Annu Rev Biochem 40: 635–652, 1971

    Article  CAS  PubMed  Google Scholar 

  3. McKay RD, Hockfield S, Johnson J, Thompson I, Frederiksen K: Surface molecules identify groups of growing axons. Science 222: 788–794, 1983

    CAS  PubMed  Google Scholar 

  4. Bamburg JR, Bray D, Chapman K: Assembly of microtubules at the tip of growing axons. Nature 32: 788–790, 1986

    Article  Google Scholar 

  5. Zmuda JF, Rivas RJ: Actin filament disruption blocks cerebellar granule neurons at the unipolar stage of differentiation in vitro. J Neurobiol 15: 313–328, 2000

    Article  Google Scholar 

  6. Angelides KJ, Smith KE, Takeda M: Assembly and expression of intermediate filament proteins of neurons: Neurofilaments and dynamic structures. J Cell Biol 108: 1495–1506, 1989

    Article  CAS  PubMed  Google Scholar 

  7. Tsuda M, Tashiro T, Komiya Y: Selective solubilization of high molecular mass neurofilament subunit during nerve regeneration. J Neurochem 74: 860–868, 2000

    Article  CAS  PubMed  Google Scholar 

  8. Jameson L, Frey T, Zeeberg B, Dalldorf F, Caplow M: Inhibition of microtubule assembly by phosphorylation of microtubule associated proteins. Biochemistry 19: 2472–2479, 1980

    CAS  PubMed  Google Scholar 

  9. Riederer BM, Binder LI: Differential distribution of tau proteins in developing cat cerebellum. Brain Res Bull 33: 155–161, 1994.

    CAS  PubMed  Google Scholar 

  10. Sarnat HB, Born DE: Synaptophysin immunocytochemistry with thermal intensification: A marker of terminal axon maturation in the human fetal nervous system. Brain Dev 21: 41–50, 1999.

    CAS  PubMed  Google Scholar 

  11. Stettler O, Tavitian B, Moya KL: Differential synaptic vesicle protein expression in the barrel field of developing cortex. J Comp Neurol 375: 321–332, 1996.

    CAS  PubMed  Google Scholar 

  12. Daly C, Ziff EB: Post transcriptional regulation of synaptic vesicle protein expression and the developmental control of synaptic vesicle formation. J Neurosci 17: 2365–2375, 1997

    CAS  PubMed  Google Scholar 

  13. Beranova-Giorgianni S, Pabst MJ, Russell TM, Giorgianni F, Goldowitz D, Desiderio DM: Preliminary analysis of mouse cerebellum proteome. Mol Brain Res 98: 135–140, 2002.

    CAS  PubMed  Google Scholar 

  14. Chakraborty M, Lahiri P, Chatterjee D: Thyroidal influence on the cell surface GM1 of granule cells – its significance in cell migration during rat brain development. Cell Mol Neurobiol 12: 589–596, 1992

    CAS  PubMed  Google Scholar 

  15. Chatterjee D, Mandal C, Sarkar PK: Development and characterization of five monoclonal antibodies against neuronal cell surface antigen – evaluation of their use in cell separation by affinity chromatography. J Neuroimmunol 15: 251–262, 1987

    CAS  PubMed  Google Scholar 

  16. Chatterjee D, Chakraborty M, Anderson GM: Differentiation of Neuro-2a neuroblastoma cells by antibody to GM3 ganglioside. Brain Res 583: 31–44, 1992

    CAS  PubMed  Google Scholar 

  17. Levenson RM, Anderson GM, Cohn JA, Blackshear PJ: Giant two-dimensional gel electrophoresis: Methodological update and comparison with intermediate format gel system. Electrophoresis ([0-9]+): 269–279, 1990

    CAS  PubMed  Google Scholar 

  18. Young DA, Bruce PV, Mayyytin EV, Colbery RA: Very high resolution two dimensional electrophoretic separation of proteins on giant gels. Methods Enzymol 91: 191–213, 1983

    Google Scholar 

  19. Rohlff C: Proteomices in molecular medicine: Applications in central nervous system disorders. Electrophoresis 21: 1227–1234, 2000

    CAS  PubMed  Google Scholar 

  20. Gauss C, Kalkum M, Lowe M, Lehrach H, Klose J: Analysis of mouse proteome (I) Brain proteins: Separation by two-dimentional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20: 575–600, 1999

    CAS  PubMed  Google Scholar 

  21. Tsugita A, Kawakami T, Uchida T, Kamo M, Matsui T, Watanabe Y, Orimasa T, Hosokawa K, Toda T: Proteome analysis of mouse brain: Two-dimentional electrophoresis profiles of tissue proteins during the course of aging. Electrophoresis 21: 1853–1871, 2000

    CAS  PubMed  Google Scholar 

  22. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA: Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I : Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med ([0-9]+): 562–571, 2002

    Article  CAS  PubMed  Google Scholar 

  23. Tilleman K, Stevens I, Spittaels K, Haute CV, Clerens S, Van Den Bergh G, Geerts H, Van Leuven F, Vandesande F, Moens L: Differential expression of brain proteins in glycogen synthase kinase-3 transgenic mice: A proteomics point of view. Proteomics ([0-9]+): 94–104, 2002

    CAS  PubMed  Google Scholar 

  24. Dunn ME, Schilling K, Mugnaini E: Development and fine structure of murine Purkinji cells in dissociatied cerebellar culture: Dendritic differentiation, synaptic maturation, and formation of cell-class specific features. Anat Embryol (Berl) 197: 31–50, 1998

    CAS  Google Scholar 

  25. Herndon RM: The interaction of axonal and dendritic elements in the developing and the mature synapses. UCLA Foram Med Sci 14: 167–176, 1971

    CAS  Google Scholar 

  26. Ramakers GJA, Avci B, van Hulten P, van Ooyen A, van Pelt J, Pool CW, Lequin MB: The role of calcium signalling in early axonal and dendritic morphogenesis of rat cerebral cortex neurons under non-stimulated growth condition. Dev Brain Res 126: 163–172, 2001

    CAS  Google Scholar 

  27. Varon SS: The investigation of neural development by experimental in vitro techniques. UCLA Foram Med Sci 14: 223–252, 1971.

    CAS  Google Scholar 

  28. Daniels M: The role of microtubules in the growths and stabilization of nerve fibers. Annu NY Acad Sci 253: 535–544, 1975

    CAS  Google Scholar 

  29. Hoffman PN, Lasek RJ: The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66: 351–366, 1975

    CAS  PubMed  Google Scholar 

  30. Fuchs E, Weber K: Intermediate filaments: Structure, dynamics, functions and disease. Annu Rev Biochem 63: 345–382, 1994

    CAS  PubMed  Google Scholar 

  31. Bignami A, Chi NH, Dahl D: Neurofilament phosphorylation in peripheral nerve regeneration. Brain Res 375: 73–82, 1986

    CAS  PubMed  Google Scholar 

  32. Espindola FS, Suter DM, Partata LB, Cao T, Wolenski JS, Cheney RE, King SM, Mooseker MS: The light chain composition of chicken brain myosin-Va: Calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil Cytoskeleton 47: 269–281, 2000

    CAS  PubMed  Google Scholar 

  33. Agnado F, Pozas E, Blasi J: Colchicine administration in the rat central nervous system induces SNAP-25 expression. Neuroscience ([0-9]+): 275–283, 1999

    PubMed  Google Scholar 

  34. Quatacker J, Partoens P, De Potter W: Differential ultrastructural distribution of synapsin and synaptophysin proximal to a ligation in bovine splenic nerve. Brain Res 802: 281–284, 1998

    CAS  PubMed  Google Scholar 

  35. Dhingra NK, Ramamohan Y, Raju TR: Developmental expression of synaptophysin, synapsin I and syntaxin in the rat retina. Dev Brain Res 102: 267–273, 1997

    CAS  Google Scholar 

  36. Tcherepanov AA, Sokolov BP: Age related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B and synaptophysin in the temporal cortex of schizophrenics. J Neurosci Res 49: 639–644, 1997

    CAS  PubMed  Google Scholar 

  37. Catsicas S, Larhammar D, Blomqvist A, Sanna PP, Milner RJ, Wilson MC: Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis. Proc Natl Acad Sci USA ([0-9]+): 785–789, 1991

    CAS  PubMed  Google Scholar 

  38. Van Lookeren Campagne M, Dotti CG, Verkleij AJ, Gispen WH, Oestrecher B: Redistribution of B-50/growth-associated protein-43 during differentiation and maturation of rat hippocampal neurons in vitro. Neuroscience 51: 601–619, 1992

    CAS  PubMed  Google Scholar 

  39. Uryu K, Butler AK, Chesselet MF: Synaptogenesis and ultrastructural localization of the polysialylated neural cell adhesion molecule in the developing striatum. J Comp Neurol 405: 216–232, 1999

    CAS  PubMed  Google Scholar 

  40. Moscoso LM, Cremer H, Sanes JR: Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth facter-5. J Neurosci ([0-9]+): 1465–1477, 1998.

    CAS  PubMed  Google Scholar 

  41. Toaka M, Wakamiya A, Nakayama H, Isobe T: Protein profiling of cerebella during development. Electrophoresis 21: 1872–1879, 2000

    PubMed  Google Scholar 

  42. Fountoulakis M, Hardmaier R, Schuller E, Lubec G: Difference in protein level between neonatal and adult brain. Electrophoresis ([0-9]+): 673–678, 2000

    CAS  PubMed  Google Scholar 

  43. Yamauchi Y, Hongo S, Ohashi T, Shioda S, Zhou C, Nakai Y, Nishinaka N, Takahashi R, Takeda F, Takeda M: Molecular cloning and characterization of a novel developmentally regulated gene, BdmI, showing predominant expression in postnatal rat brain. Mol Brain Res 68: 149–158, 1999

    CAS  PubMed  Google Scholar 

  44. Nishinaka N, Hongo S, Zhou C, Shioda S, Takahashi R, Yamauchi Y, Ohashi T, Ohki T, Nakada N, Takeda F, Takeda M: Identification of the novel developmentally regulated gene, Bdm2, which is highly expressed in fetal rat brain. Dev Brain Res 120: 57–64, 2000

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diptendu Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, M., Chatterjee, D. Developmental changes in the neuronal protein composition: A study by high resolution 2D-gel electrophoresis. Mol Cell Biochem 272, 201–207 (2005). https://doi.org/10.1007/s11010-005-7633-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-7633-5

Keywords

Navigation