Skip to main content
Log in

IGF-I activates the eIF4F system in cardiac muscle in vivo

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

IGF-I acutely stimulates protein synthesis in cardiac muscle through acceleration of mRNA translation. In the present study, we examined the regulatory signaling pathways and translation protein factors that potentially contribute to the myocardial responsiveness of protein synthesis to IGF-I in vivo. IGF-I was injected IV into rats and 20 min later the hearts were excised and homogenized for assay of regulatory proteins. IGF-I increased assembly of the translationally active eukaryotic initiation factor (eIF)4G⋅eIF4E complex. The increased assembly of eIF4G⋅eIF4E was associated with an enhanced eIF4G phosphorylation and increased availability of eIF4E. Increased availability of eIF4E occurred as a consequence of diminished abundance of the inactive 4E-BP1⋅eIF4E complex following IGF-I. The assembly of the 4E-BP1⋅eIF4E complex appeared to be decreased through an IGF-I-induced phosphorylation of 4E-BP1. IGF-I also caused an increase in the phosphorylation of S6K1. Activation of the potential upstream regulators of 4E-BP1 and S6K1 phosphorylation via PKB and mTOR was also observed. In contrast, there was no effect of IGF-I on phosphorylation of elongation factor (eFE)2. The results suggest the major impact of IGF-I in cardiac muscle occurred via stimulation of translation initiation rather than elongation. Furthermore, the results are consistent with a role for assembly of active eIF4G⋅eIF4E complex and activation of S6K1 in mediating the stimulation of mRNA translation initiation by IGF-I through a PKB/mTOR signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young LH, Renfu Y, Hu X, Chong S, Hasan S, Jacob R, Sherwin RS: Insulin-like growth factor-I stimulates cardiac myosin heavy chain and actin synthesis in the awake rat. Am J Physiol Endocrinol Metab 276: E143–E150, 1999

    CAS  Google Scholar 

  2. Bark TH, McNurlan MA, Lang CH, Garlick PJ: Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Physiol Endocrinol Metabol 275: E118–E123, 1998

    CAS  Google Scholar 

  3. Fuller SJ, Mynett JR, Sugden PH: Stimulation of cardiac protein synthesis by insulin-like growth factors. Biochem J 282: 85–90, 1992

    CAS  PubMed  Google Scholar 

  4. Sonenberg N, Dever TE: Eukaryotic translation initiation factors and regulators. Curr Opin Structural Biol 13: 56–63, 2003

    Article  CAS  Google Scholar 

  5. Cooney RN, Kimball SR, Vary TC: Regulation of skeletal muscle protein turnover during sepsis: Mechanisms and mediators. Shock 7: 1–16, 1998

    Google Scholar 

  6. Rhoads RE: Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem 268: 3017–3020, 1993

    CAS  PubMed  Google Scholar 

  7. Kimball SR, Vary TC, Jefferson LS: Regulation of protein synthesis by insulin. Ann Rev Physiol 56: 321–348, 1994

    Article  CAS  Google Scholar 

  8. Proud CG, Denton RM: Molecular mechanisms for activation of protein synthesis by insulin. Biochem J 328: 329–341, 1997

    CAS  PubMed  Google Scholar 

  9. Rhoads RE, Joshi-Barve S, Minich WB: Participation of initiation factors in recruitment of mRNA to ribosomes. Biochimie 76: 831–838, 1994

    Article  CAS  PubMed  Google Scholar 

  10. Sonenberg N: Regulation of translation and cell growth by eIF-4E. Biochimie 76: 839–846, 1994

    Article  CAS  PubMed  Google Scholar 

  11. Lamphear BJ, Kirchweger JR, Skern T, Rhoads RE: Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF-4G) with pircoviral proteases. Implication for cap-dependent and cap-independent translation initiation. J Biol Chem 270: 21975–21983, 1995

    CAS  PubMed  Google Scholar 

  12. Lang CH, Frost RA, Kumar V, Vary TC: Impaired myocardial protein synthesis induced by acute alcohol intoxication is associated with changes in eIF4F. Am J Physiol Endocrinol Metabol 279: E1029–E1038, 2000

    CAS  Google Scholar 

  13. Vary TC, Lynch CJ, Lang CH: Effects of chronic alcohol consumption on regulation of myocardial protein synthesis. Am J Physiol Heart Circ Physiol 281: H1242–H1251, 2001

    CAS  PubMed  Google Scholar 

  14. Lang CH, Frost RA, Vary TC: Thermal injury impairs cardiac protein synthesis and is associated with alterations in translation initiation. Am J Physiol Reg Integ Comp Physiol 286: R740–R750, 2004

    CAS  Google Scholar 

  15. Wang L, Wang X, Proud CG: Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. Am J Physiol Heart Circ Physiol 278: H1056–H1068, 2000

    CAS  PubMed  Google Scholar 

  16. Raught B, Gingras A-C, Gygi SP, Imaataka H, Morino S, Gradi A, Aebersold R, Sonenberg N: Serum-stimulated, rapamycin-sensitive phosphorylation sites in eukaryotic translation initiation factor 4GI. EMBO J 19: 434–444, 2000

    CAS  PubMed  Google Scholar 

  17. Haghihat A, Maderr S, Pause A, Sonenberg N: Repression of cap-dependent translation by 4E-binding protein I: Competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J ([0-9]+): 5701–5709, 1995

    PubMed  Google Scholar 

  18. Gingas A-C, Raught B, Sonenberg N: eIF4 initiation factors: Effectors of mRNA recruitment and regulators of translation. Annu Rev Biochem 68: 913–963, 1999

    PubMed  Google Scholar 

  19. Gingras A-C, Gygi SP, Raught B: Regulation of 4E-BP1 phosphorylation: A novel 2-step mechanism. Genes Dev 13: 1422–1437, 1999

    CAS  PubMed  Google Scholar 

  20. Gingras A-C, Raught B, Sonenberg N: Regulation of translation initiation by FRAP/TOR. Genes Dev 15: 807–826, 2001

    CAS  PubMed  Google Scholar 

  21. Vary TC, Nairn A, Lynch CJ: Role of elongation factor 2 in regulating peptide-chain elongation in heart. Am J Physiol Endocrinol Metabol 266: E628–E634, 1994

    CAS  Google Scholar 

  22. Vary TC, Nairn AC, Lang CH: Differential effects of alcohol consumption on eukaryotic elongation factors in heart, skeletal muscle and liver. Alcoholism Clin Exp Res 26: 1794–1802, 2002

    CAS  Google Scholar 

  23. Vary TC, Nairn A, Lang CH: Restoration of protein synthesis in heart and skeletal muscle after withdrawal of alcohol. Alcoholism Clin Exp Res 28: 517–525, 2004

    CAS  Google Scholar 

  24. Palfrey HC, Nairn AC, Muldoon LL, Villereal ML: Rapid activation of calmodulin-dependent protein kinase III in mitogen-stimulated human fibroblasts. J Biol Chem 262: 9785–9792, 1987

    CAS  PubMed  Google Scholar 

  25. Ryazanov AG, Shestakova EA, Natapov PG: Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334: 170–173, 1988

    CAS  PubMed  Google Scholar 

  26. Lang CH, Kumar V, Liu X, Frost RA, Vary TC: IGF-I induced phosphorylation of S6K1 and 4E-BP1 in heart is impaired by acute alcohol intoxication. Alcoholism Clin Exp Res 27: 485–494, 2003

    CAS  Google Scholar 

  27. Weng Q-P, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J: Regulation of the p70 S6 kinase by phosphorylation in vivo: Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem 273: 16621–16629, 1998

    CAS  PubMed  Google Scholar 

  28. Weng Q-P, Anadrabi K, Kozlowski MT, Grove JR, Avruch J: Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15: 2333–2340, 1998

    Google Scholar 

  29. Marin P, Nastiuk KL, Daniel N, Girault J-A, Czerik AJ, Glowiniski J, Nairn AC, Premont J: Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons. J Neurosci 17: 3445–3454, 1997

    CAS  PubMed  Google Scholar 

  30. Ptushkina M, von der Harr T, Karim M, Hughes JMX, McCarthy JEG: Repressor binding to a dual regulatory site traps human eIF4E in a high cap-affinity state. EMBO J 18: 4068–4075, 1999

    CAS  PubMed  Google Scholar 

  31. Raught B, Gingras A-C: eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol 31: 43–57, 1999

    CAS  PubMed  Google Scholar 

  32. Raught B, Gingas A-C, Sonenberg N: The target of rapamycin (TOR) proteins. Proc Nat Acad Sci (USA) 98: 7037–7044, 2001

    CAS  Google Scholar 

  33. Lin TA, Kong X, Haystead TAJ, Pause A, Belsham G, Sonnenberg N, Lawrence JC Jr: PHAS-I as a link between mitogen activated protein kinase and translation initiation. Science 266: 653–656, 1994

    CAS  PubMed  Google Scholar 

  34. Kozma SC, Thomas G: p70s6k/p85s6k: Mechanism of activation and role in mitogenesis. Cancer Biol 5: 255–266, 1994

    CAS  Google Scholar 

  35. Farrari S, Thomas G: S6 phosphorylation and the p70(s6k)/p85(s6k). Crit Rev Biochem Mol Biol 29: 385–413, 1994

    PubMed  Google Scholar 

  36. Nave BT, Ouwens DM, Withers DJ, Alessi DR, Shepard PR: Mammalian target of rapamycin is a direct target for protein kinase B: Indentification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344: 427–431, 1999

    CAS  PubMed  Google Scholar 

  37. Alessi DR, Cohen P: Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8: 55–62, 1998

    CAS  PubMed  Google Scholar 

  38. van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, Reuser A, Sampson J, Halley D, ven der Sluijs P: Interaction between humartrin and tuberlin, the TSC1 and TSC2 gene products. Hum Mol Genet 7: 1053–1057, 1998

    CAS  PubMed  Google Scholar 

  39. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J: Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian (mTOR)-mediated downstream signaling. Proc Nat Acad Sci (USA) 99: 13571–13576, 2002

    CAS  Google Scholar 

  40. Inoki K, Li Y, Zhu T, Wu J, Guan K-L: TSC2 is phosphorylated and inhibited by AKT and suppresses mTOR signaling. Nature Cell Biol ([0-9]+): 648–657, 2002

    CAS  PubMed  Google Scholar 

  41. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC: Identification of the tuberous sclerosis complex-2 tumor supressor gene product tuberlin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol Cell 10: 151–162, 2002

    CAS  PubMed  Google Scholar 

  42. Dan HC, Sun MY, L, Feldman RI, Sui X-M, Ou CC, Nellist M, Yeung RS, Halley DJJ, Nicosia SV, Pleder WJ, Cheng JQ: Phosphotidylinositol 3-kinase/AKT pathway regulates tuberous sclerosis tumor supressor complex by phosphorylation of tuberin. J Biol Chem 277: 35364–35370, 2002

    CAS  PubMed  Google Scholar 

  43. Redpath NT, Foulstone EJ, Proud CG: Regulation of translation elongation factor 2 by insulin via a rapamycin-sensitive signaling pathway. EMBO J 15: 2291–2297, 1996

    CAS  PubMed  Google Scholar 

  44. Browne GJ, Proud CG: A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 24: 2986–2997, 2004

    CAS  PubMed  Google Scholar 

  45. Wells SE, Hilner PE, Vale RD, Sachs AB: Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2: 135–140, 1998

    CAS  PubMed  Google Scholar 

  46. Pyronnet S, Imataka H, Gingras A-G, Fukunaga R, Hunter T, Sonenberg N: Human eukaryotic translation initiation factor 4G (eIF4G) recruits MNK1 to phosphorylate eIF4E. EMBO J 18: 27–279, 1999

    Google Scholar 

  47. Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA: Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19: 1871–1880, 1999

    CAS  PubMed  Google Scholar 

  48. Morley SJ, Traugh JA: Differential stimulation of phosphorylation of initiation factors eIF-4F, eIF-4B, eIF-3 and ribosomal protein S6 by insulin and phorbol esters. J Biol Chem 265: 10611–10616, 1990

    CAS  PubMed  Google Scholar 

  49. Pause A, Belsham GJ, Gingras A-C, Donze O, Lin T-A, Lawrence JC Jr, Sonenberg N: Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371: 762–767, 1994

    CAS  PubMed  Google Scholar 

  50. Tsukiyama-Kohara K, Vidal SM, Gingas A-C, Glover TW, Hanash SM, Heng H, Sonenberg N: Tissue distribution, genomic structure, and chromosome mapping of mouse and human eukaryotic initiation factor 4E-binding proteins 1 and 2. Genomics 38: 353–363, 1996

    CAS  PubMed  Google Scholar 

  51. Mader S, Lee H, Pause A, Sonenberg N: The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4G and the repressors 4E-binding proteins. Mol Cell Biol 15: 4990–4997, 1995

    CAS  PubMed  Google Scholar 

  52. Tuxworth WJ, Wada H, Ishibashi Y, McDermott PJ: Role of load in regulating eIF-4F complex formation in adult feline cardiocytes. Am J Physiol Heart Circ Physiol 277: H1273–H1282, 1999

    CAS  Google Scholar 

  53. Hannan RD, Jenkins A, Jenkins AK, Brandenburger Y: Cardiac hypertrophy: A matter of translation. Clin Exp Pharmcol Physiol ([0-9]+): 517–527, 2003

    CAS  Google Scholar 

  54. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S: Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107: 1664–1670, 2003

    CAS  PubMed  Google Scholar 

  55. McMullen JR, Shioi T, Huang W-Y, Zhang L, Tarnavski O, Bisping E, Schimke M, Kong S, Sherwood MC, Brown J, Rigg L, Kang PM, Izumo S: The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110a) pathway. J Biol Chem 279: 4782–4793, 2004

    CAS  PubMed  Google Scholar 

  56. Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC: Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17: 6649–6659, 1998

    CAS  PubMed  Google Scholar 

  57. Boluyt MO, Zheng JS, Younes A, Long X, O’Neill L, Silverman H, Lakatta EG, Crow MT: Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res 81: 176–186, 1997

    CAS  PubMed  Google Scholar 

  58. Sadoshima J, Izumo S: Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res 77: 1040–1052, 1995

    CAS  PubMed  Google Scholar 

  59. Jefferson LS, Vary TC, Kimball SR: Regulation of protein metabolism in muscle. In: L.S. Jefferson and A.D. Charrington (eds), Handbook of Physiology, Vol. II. Oxford University Press, New York, 2001, pp. 529–552

    Google Scholar 

  60. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL: Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature 377: 441–446, 1995

    CAS  PubMed  Google Scholar 

  61. Avruch J: Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182: 31–42, 1998

    CAS  PubMed  Google Scholar 

  62. Peterson RT, Beal PA, Comb MJ, Schreiber SL: FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275: 7416–7423, 2000

    CAS  PubMed  Google Scholar 

  63. Sekulic A, Hudson CC, Homme JL, Peng Y, Otterness DM, Karnitz LM, Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res ([0-9]+): 3504–3513, 2000

    CAS  PubMed  Google Scholar 

  64. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D: Rheb is a direct target of the tuberous sclerosis tumor supressor proteins. Nature Cell Biol 5: 578–581, 2003

    CAS  PubMed  Google Scholar 

  65. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J: Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex towards Rheb. Curr Biol 13: 1259–1268, 2003

    CAS  PubMed  Google Scholar 

  66. Garami A, Zwartkruis FJT, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G: Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and TSC2. Mol Cell 11: 1457–1466, 2003

    CAS  PubMed  Google Scholar 

  67. Inoki K: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834, 2003

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Vary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vary, T.C., Lang, C.H. IGF-I activates the eIF4F system in cardiac muscle in vivo. Mol Cell Biochem 272, 209–220 (2005). https://doi.org/10.1007/s11010-005-7551-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-7551-6

Keywords

Navigation