Skip to main content
Log in

Mitochondrial glycosidic residues contribute to the interaction between ruthenium amine complexes and the calcium uniporter

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The role of glycosidic residues in the inhibitory properties of ruthenium complexes on mitochondrial calcium uptake was determined in mitoplasts.

Our results showed that the binding and inhibitory properties of ruthenium amine complexes were modified when mitoplasts were exposed to N-glycosidase F action, but calcium uptake was not altered. N-linked proteins of the mitochondrial inner membrane were identified. We detected an 18-kDa protein that binds labeled Ru360 under control conditions, but failed to bind the inhibitor after deglycosilation. A relationship between this protein and the action of ruthenium amine inhibitors of the mitochondrial uniporter is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sottocasa G, Sandri G, Panfili E, De Bernard B, Gazzotti P, Vasington F, Carafoli E: Isolation of a soluble Ca2+-binding glyprotein from ox liver mitochondria. Biochem Biophys Res Commun 47: 808–813, 1972

    Article  CAS  PubMed  Google Scholar 

  2. Ito N, Kawasaki T, Yamashina I: Isolation and characterization of glycopeptides from rat liver mitochondria. J Biochem 76: 459–466, 1974

    CAS  PubMed  Google Scholar 

  3. Gasnier F, Ardail K, Lermé F, Simonet C, Vaganay E, Louisot P, Gateau-Roesch O: Further characterization of mitochondrial outer membrane: Evidence for the presence of two endogenous sialylated glycoproteins. J Biochem 116: 643–648, 1994

    CAS  PubMed  Google Scholar 

  4. Carafoli E, Sottocasa G: L. Ernster (ed), Bioenergetics. Elsevier Science Publishers, Amsterdam, 1984, pp 130–137

    Google Scholar 

  5. Garlid K: Mitochondrial calcium transport: A progress report. J Bioenerg Biomembr 26: 537–542, 1994

    Article  CAS  PubMed  Google Scholar 

  6. Mironova G, Sirota T, Pronevich L, Trofimenko N, Mironov G, Grigorjev P, Kondrashova M. Isolation and properties of Ca2+-transporting glycoprotein and peptide from beef heart mitochondria. J Bioenerg Biomembr 14: 213–225, 1982

    Article  CAS  PubMed  Google Scholar 

  7. Mironova G, Baumann M, Kolomytkin O, Krasichkova Z, Berdimuratov A, Sirota T, Virtanen I, Saris N: Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers. J Bioenerg Biomembr 26: 231–238, 1994

    Article  CAS  PubMed  Google Scholar 

  8. Moore CL: Specific inhibition of mitochondrial Ca2+ transport by ruthenium red. Biochim Biophys Res Comm 42: 298–305, 1971

    Article  CAS  Google Scholar 

  9. Vasington F, Gazotti P, Tiozzo R, Carafoli E: The effect of ruthenium red on Ca2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta 256: 43–54, 1972

    CAS  PubMed  Google Scholar 

  10. Reed K, Bygrave F: The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J 140: 143–155, 1974

    CAS  Google Scholar 

  11. Tashmukhamedov B, Gagelgans P, Mamatkulov K, Makhmudova E: Inhibition of Ca2+ transport in mitochondria by selective blockade of membrane mucopolysaccharides by hexamine cobaltichloride. FEBS Lett ([0-9]+): 239–242, 1972

    Article  CAS  PubMed  Google Scholar 

  12. Kirichok Y, Krapivinsky G, Clapham D: The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427: 360–364, 2004

    Article  CAS  PubMed  Google Scholar 

  13. Gunter T, Yule D, Gunter K, Eliseev R, Salter J: Calcium and mitochondria. FEBS Lett 567: 96–102, 2004

    Article  CAS  PubMed  Google Scholar 

  14. Deryabina Y, Isakova E, Zvyagilskaya R: Mitochondrial calcium transport systems: properties, regulation and taxonomic features. Biochemistry (Moscow) 69: 91–102, 2004

    Article  CAS  Google Scholar 

  15. Zazueta C, Zafra G, Vera G, Sánchez C, Chávez E: Advances in the purification of the mitochondrial Ca2+ uniporter by using the labeled inhibitor 103Ru360. J Bioenerg Biomembr 30: 489–498, 1998

    Article  CAS  PubMed  Google Scholar 

  16. Chávez E, Briones R, Michel B, Bravo C, Jay D: Evidence for the involvement of dithiol groups in mitochondrial calcium transport: studies with cadmium. Arch Biochem Biophys 242: 493–497, 1985

    Article  PubMed  Google Scholar 

  17. Graham J: J. Graham, J. Higgins (eds), Methods in Molecular Biology. Humana Press, Totowa, New Jersey. 1993, pp 78–95

    Google Scholar 

  18. Seymour C, Peters T: Lysosomal changes in liver tissues from patients with the Dubin–Johnson–Sprinz syndrome. Clin Sci and Mol Med 52: 229–239, 1977

    CAS  Google Scholar 

  19. Cohen G, Dembiec D, Marcus J: Measurement of catalase activity in tissue extracts. Anal Biochem 34: 30–38, 1970

    Article  CAS  PubMed  Google Scholar 

  20. Hackenbrock C, Hammon K: Comparative distribution of cytochrome oxidase, succinate permease and fixed anionic sites on the inner mitochondrial membrane. Arch Biochem Biophys 170: 139–148, 1975

    Article  CAS  PubMed  Google Scholar 

  21. Ying W, Emerson J, Clarke M, Sanadi R: Inhibition of mitochondrial calcium ion transport by an oxo-bridged dinuclear ruthenium amine complex. Biochemistry 30: 4949–4952, 1991

    Article  CAS  PubMed  Google Scholar 

  22. Okazaki I, Himeno M, Ezaki J, Ishikawa T, Kato K: Purification and characterization of an 85-kDa sialoglycoprotein in rat liver lysosomal membranes. J Biochem 111: 763–769, 1992

    CAS  PubMed  Google Scholar 

  23. Radi R, Turrens J, Chang L, Bush K, Crapo J, Freeman B: Detection of catalase in rat heart mitochondria. J Biol Chem 266: 22028–22034, 1991

    CAS  PubMed  Google Scholar 

  24. Petronilli Vs, Coia C, Massari S, Colonna R, Bernardi P: Physiological effectors modify voltage sensing by the Cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem 286: 21939–21945, 1993

    Google Scholar 

  25. Matlib M, Zhou Z, Knight S, Ahmed S, Choi K, Krause-Baner J, Phillips R, Attschuld R, Katsube Y, Sperelakis N, Bers D: Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits calcium uptake into mitochondria in vivo and in situ in single cardiac myocytes. J Biol Chem 273: 10223–10231, 1998

    CAS  PubMed  Google Scholar 

  26. Zazueta C, Sosa-Torres ME, Correa F, Garza A: Inhibitory properties of ruthenium amine complexes on mitochondrial calcium uptake. J Bioenerg Biomembr 31: 549–555, 1999

    Google Scholar 

  27. Hart G: Dynamic O-linked glycosilation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66: 315–335, 1997

    CAS  PubMed  Google Scholar 

  28. Chandra N, Spiro M, Spiro R: Identification of a glycoprotein from rat liver mitochondrial inner membrane and demonstration of its origin in the endoplasmic reticulum. J Biol Chem 273: 19715–19721, 1998

    CAS  PubMed  Google Scholar 

  29. Gasnier F, Rousson R, Lerme F, Vaganay E, Louisot P, Gateau-Roesch O: Mitochondrial dolichyl-phosphate mannose synthase. Purification and immunogold localization by electron microscopy. Eur J Biochem 206: 853–858, 1992

    CAS  PubMed  Google Scholar 

  30. Keutmann H, Johnson L, Ryan R: Evidence for a conformational change in deglycosilated glycoprotein hormones. FEBS Lett 185: 333–338, 1985

    CAS  PubMed  Google Scholar 

  31. Schooley J: Neuraminidase increases DNA synthesis of spleen cells induced by native and sialylated erythropoietin. Exp Hematol 13: 994–998, 1985

    CAS  PubMed  Google Scholar 

  32. Igvabvoa I, Pfeiffer D: Regulation of reverse uniport activity in mitochondria by extramitochondrial divalent cations. Dependence on a soluble intermembrane space component. J Biol Chem 266: 4283–4287, 1991

    PubMed  Google Scholar 

  33. Kobata A: Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 209: 483–501, 1992

    CAS  PubMed  Google Scholar 

  34. Carrondo M, Griffith W, Hall J, Skalski A: X-ray structure of [Ru3 O2 (NH3)14] 6+, cation of the cytological reagent Ruthenium Red. Biochim Biophys Acta 627: 332–334, 1980

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Zazueta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correa, F., Zazueta, C. Mitochondrial glycosidic residues contribute to the interaction between ruthenium amine complexes and the calcium uniporter. Mol Cell Biochem 272, 55–62 (2005). https://doi.org/10.1007/s11010-005-6754-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-6754-1

Keywords

Navigation