Skip to main content

Advertisement

Log in

Immunologically defined subclasses of the protein kinase CK2 β-subunit in prostate carcinoma cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Both, the activity as well as the expression of protein kinase CK2 is enhanced in various cancer types and in established tumour cell lines. This phenomenon is not due to an increase in the CK2 message but rather to posttranscriptional and posttranslational mechanisms. In order to get an insight into these posttranslational modifications we analyzed CK2 in prostate cancer cell lines, which differ by their hormone-sensitivity. We found that the CK2 activity is significantly higher in hormone-refractory than in hormone-sensitive cells although the amount of the catalytic α- and α′-subunits is comparable. In contrast, we detected seemingly lower amounts of the regulatory β-subunit in the hormone-refractory cell lines, which later turned out to be an immunologically defined subclass. This subclass is realized by a phosphate group, which is attached to serine 209. The phosphorylation occurs in vivo during mitosis and is executed by the p34cdc2/cyclin B kinase. As this phosphorylation enhances the CK2 activity this change might well account for the higher activity of CK2 in prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allende JE, Allende CC: Protein kinase CK2: an enzyme with multiple substrates and puzzling regulation. FASEB J 9: 313–323, 1995

    PubMed  Google Scholar 

  2. Litchfield DW: Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369: 1–15, 2003

    PubMed  Google Scholar 

  3. Guerra B, Boldyreff B, Sarno S, Cesaro L, Issinger OG, Pinna LA: CK2: A protein kinase in need of control. Pharmacol Ther 82: 303–313, 1999

    PubMed  Google Scholar 

  4. Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL: Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275: 16569–16573, 2000

    PubMed  Google Scholar 

  5. Song DH, Dominguez I, Mizuno J, Kaut M, Mohr SC, Seldin DC: CK2 phosphorylation of the armadillo repeat region of β-catenin potentiates Wnt signaling. J Biol Chem 278: 24018–24025, 2003

    PubMed  Google Scholar 

  6. Krehan A, Schmalzbauer R, Böcher O, Ackermann K, Wirkner U, Brouwers S, Pyerin W: Ets1 is a common element in directing transcription of the α and β genes of human protein kinase CK2. Eur J Biochem 268: 3243–3252, 2001

    PubMed  Google Scholar 

  7. Krehan A, Ansuini H, Böcher O, Grein S, Wirkner U, Pyerin W: Transcription factors Ets1, NF-kappaB, and Sp1 are major determinants of the promoter activity of the human protein kinase CK2α gene. J Biol Chem 275: 18327–18336, 2000

    PubMed  Google Scholar 

  8. Bosc DG, Graham KC, Saulnier RB, Zhang CJ, Prober D, Gietz RD, Litchfield DW: Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem 275: 14295–14306, 2000

    PubMed  Google Scholar 

  9. Schuster N, Götz C, Faust M, Schneider E, Prowald A, Jungbluth A, Montenarh M: Wild-type p53 inhibits protein kinase CK2 activity. J Cell Biochem 81: 172–181, 2001

    PubMed  Google Scholar 

  10. Götz C, Wagner P, Issinger O-G, Montenarh M: p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene 13: 391–398, 1996

    PubMed  Google Scholar 

  11. LeRoy D, Heriché JK, Filhol O, Chambaz EM, Cochet C: Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme – A proposed role for the kinase stimulation. J Biol Chem 272: 20820–20827, 1997

    PubMed  Google Scholar 

  12. Yenice S, Davis AT, Goueli SA, Akdas A, Limas C, Ahmed K: Nuclear casein kinase 2 (CK-2) acitivity in human normal, benign hyperplastic, and cancerous prostate. Prostate 24: 11–16, 1994

    PubMed  Google Scholar 

  13. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K: Protein kinase CK2 signaling in neoplasia. Histol Histopathol 16: 573–582, 2001

    PubMed  Google Scholar 

  14. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. Nature 227: 680–682, 1970

    CAS  PubMed  Google Scholar 

  15. Faust M, Schuster N, Montenarh M: Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Letters 462: 51–56, 1999

    PubMed  Google Scholar 

  16. Nastainczyk W, Schmidt-Spaniol I, Boldyreff B, Issinger O-G: Isolation and characterization of a monoclonal anti-protein kinase CK2 β-subunit antibody of the IgG class for the direct detection of CK2 β-subunit in tissue cultures of various mammalian species and human tumors. Hybridoma 14: 335–339, 1995

    PubMed  Google Scholar 

  17. Maya R, Oren M: Unmasking of phosphorylation-sensitive epitopes on p53 and Mdm2 by a simple Western-phosphatase procedure. Oncogene 19: 3213–3215, 2000

    PubMed  Google Scholar 

  18. Grankowski N, Boldyreff B, Issinger O-G: Isolation and characterization of recombinant human casein kinase II subunits α and β from bacteria. Eur J Biochem 198: 25–30, 1991

    PubMed  Google Scholar 

  19. Guerra B, Götz C, Wagner P, Montenarh M, Issinger O-G: The carboxy terminus of p53 mimicks the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene 14: 2683–2688, 1997

    PubMed  Google Scholar 

  20. Kuenzel EA, Krebs EG: A synthetic peptide substrate specific for casein kinase II. Proc Natl Acad Sci USA 82: 737–741, 1985

    PubMed  Google Scholar 

  21. Meggio F, Boldyreff B, Marin O, Issinger O-G, Pinna LA: Phosphorylation and activation of protein kinase CK2 by p34 cdc2 are independent events. Eur J Biochem 230: 1025–1031, 1995

    PubMed  Google Scholar 

  22. Kristensen LP, Larsen MR, Hojrup P, Issinger OG, Guerra B: Phosphorylation of the regulatory β-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site. FEBS Lett 569: 217–223, 2004

    PubMed  Google Scholar 

  23. Litchfield DW, Lüscher B, Lozeman FJ, Eisenman RN, Krebs E: Phosphorylation of CK II by p34 cdc2 in vitro and at mitosis. J Biol Chem 267: 13943–13951, 1992

    PubMed  Google Scholar 

  24. Hessenauer A, Montenarh M, Götz C: CK2-mediated pathways are interrupted in hormone-refractory prostate carcinoma cell lines. Int J Oncol 22: 1263–1270, 2003

    PubMed  Google Scholar 

  25. Hériché JK, Chambaz EM: Protein kinase CK2α is a target for the Abl and Bcr-Abl tyrosine kinases. Oncogene 17: 13–18, 1998

    PubMed  Google Scholar 

  26. Donella-Deana A, Cesaro L, Sarno S, Brunati AM, Ruzzene M, Pinna LA: Autocatalytic tyrosine-phosphorylation of protein kinase CK2 α and α′ subunits: implication of Tyr182. Biochem J 357: 563–567, 2001

    PubMed  Google Scholar 

  27. Rifkin IR, Channavajhala PL, Kiefer HLB, Carmack AJ, Landesman-Bollag E, Beaudette BC, Jersky B, Salant DJ, Ju ST, Marshak-Rothstein A, Seldin DC: Acceleration of lpr lymphoproliferative and autoimmune disease by transgenic protein kinase CK2α. J Immunol 161: 5164–5170, 1998

    PubMed  Google Scholar 

  28. Xu X, Landesman-Bollag E, Channavajhala PL, Seldin DC: Murine protein kinase CK2: Gene and oncogene. Mol Cell Biochem 191: 65–74, 1999

    PubMed  Google Scholar 

  29. Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O, Vilk G, Doherty-Kirby A, Lajoie G, Litchfield DW, Pinna LA: Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J 372: 841–849, 2003

    PubMed  Google Scholar 

  30. Boldyreff B, James P, Staudenmann W, Issinger O-G: Ser2 is the autophosphorylation site in the β subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2β. Eur J Biochem 218: 515–521, 1993

    PubMed  Google Scholar 

  31. Meggio F, Boldyreff B, Issinger O-G, Pinna LA: The autophosphorylation and p34 cdc2 phosphorylation sites of casein kinase-2 beta-subunit are not essential for reconstituting the fully-active heterotetrameric holoenzyme. Biochim Biophys Acta 1164: 223–225, 1993

    PubMed  Google Scholar 

  32. Zhang CJ, Vilk G, Canton DA, Litchfield DW: Phosphorylation regulates the stability of the regulatory CK2β subunit. Oncogene 21: 3754–3764, 2002

    PubMed  Google Scholar 

  33. Bosc DG, Slominski E, Sichler C, Litchfield DW: Phosphorylation of casein kinase II by p34 cdc2-Identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem 270: 25872–25878, 1995

    PubMed  Google Scholar 

  34. Mulner-Lorillon O, Cormier P, Labbe J-C, Doree M, Pouhle R, Osborne H, Belle R: M-phase-specific cdc2 protein kinase phosphorylates the β subunit of casein kinase II and increases casein kinase II activity. Eur J Biochem 193: 529–534, 1990

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Montenarh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, C., Kartarius, S., Schetting, S. et al. Immunologically defined subclasses of the protein kinase CK2 β-subunit in prostate carcinoma cell lines. Mol Cell Biochem 274, 181–187 (2005). https://doi.org/10.1007/s11010-005-2950-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-2950-2

Keywords

Navigation