Skip to main content
Log in

Convergence Rates of Attractive-Repulsive MCMC Algorithms

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

This article has been updated

Abstract

We consider MCMC algorithms for certain particle systems which include both attractive and repulsive forces, making their convergence analysis challenging. We prove that a version of these algorithms on a bounded state space is uniformly ergodic with explicit quantitative convergence rate. We also prove that a version on an unbounded state space is still geometrically ergodic, and then use the method of shift-coupling to obtain an explicit quantitative bound on its convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 04 November 2021

    The 6th author name and abstract text was updated.

References

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. The J Chem Phys 31(2):459–466

  • Aldous DJ, Thorisson H (1993) Shift-coupling. Stochastic Processes and their Applications 44(1):1–14

    Article  MathSciNet  Google Scholar 

  • Andrieu Christophe, De Freitas Nando, Doucet Arnaud, Jordan Michael I (2003) An introduction to mcmc for machine learning. Mach Learn 50(1):5–43

    Article  Google Scholar 

  • Asmussen S, Glynn PW, Thorisson H (1992) Stationarity detection in the initial transient problem. ACM Transactions on Modeling and Computer Simulation (TOMACS) 2(2):130–157

    Article  Google Scholar 

  • Barker AA (1965) Monte Carlo calculations of the radial distribution functions for a proton-electron plasma. Aust J Phys 18(2):119–134

    Article  Google Scholar 

  • Brooks S, Gelman A, Jones G, Meng XL (2011) Handbook of Markov chain Monte Carlo. CRC Press

  • Brooks SP, Gelman A (1996) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    MathSciNet  Google Scholar 

  • Cohn Harry (1983) On the fluctuation of stochastically monotone Markov chains and some applications. J Appl Probab 20(1):178–184

    Article  MathSciNet  Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review. J Am Stat Assoc 91:883–904

    Article  MathSciNet  Google Scholar 

  • Cowles MK, Roberts GO, Rosenthal JS (1999) Possible biases induced by MCMC convergence diagnostics. J Stat Comput Simul 64:87–104

    Article  MathSciNet  Google Scholar 

  • Daley DJ (1968) Stochastically monotone Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 10(4):305–317

    Article  MathSciNet  Google Scholar 

  • Doeblin W (1938) Exposé de la théorie des chaınes simples constantes de markov á un nombre fini détats. Mathématique de l’Union Interbalkanique 2(77–105):78–80

    MATH  Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

  • Gelman Andrew, Rubin Donald B (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472

    MATH  Google Scholar 

  • Geman Stuart, Geman Donald (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(5–6):721–741

    Article  Google Scholar 

  • Geyer CJ (1992) Practical Markov chain Monte Carlo. Stat Sci 7:473–483

    Google Scholar 

  • Hammersley JM (1972) Stochastic models for the distribution of particles in space. Adv Appl Probab 4:47–68

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chain Monte Carlo. Biometrika 57:97–109

    Article  MathSciNet  Google Scholar 

  • Jasra Ajay, Del Moral Pierre (2011) Sequential Monte Carlo methods for option pricing. Stoch Anal Appl 29(2):292–316

    Article  MathSciNet  Google Scholar 

  • Jones Galin L, Hobert James P (2004) Sufficient Burn-in for Gibbs Samplers for a Hierarchical Random Effects Model. Ann Stat 32(2):784–817

    Article  MathSciNet  Google Scholar 

  • Jones GL, Hobert JP (2001) Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16(4):312–334

    Article  MathSciNet  Google Scholar 

  • Korteweg AG (2011) Markov chain Monte Carlo methods in corporate finance. Available at SSRN 1964923

  • Krauth W (2021) Event-chain Monte Carlo: foundations, applications, and prospects. https://arxiv.org/abs/2102.07217

  • Liggett TM (1978) Random invariant measures for Markov chains, and independent particle systems. Z. Warhschemlichkeitstheorie verw. Gebiete 45:297–313

    Article  MathSciNet  Google Scholar 

  • Lund RB, Meyn SP, Tweedie RL (1996) Computable exponential convergence rates for stochastically ordered Markov processes. Ann. Appl. Probab. 6(1):218–237

    Article  MathSciNet  Google Scholar 

  • Matthews P (1993) A slowly mixing Markov chain with implications for Gibbs sampling. Statistics and Probability Letters 17:231–236

    Article  MathSciNet  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  • Meyn SP, Tweedie RL (2012) Markov Chains and Stochastic Stability. Springer Science & Business Media

  • Roberts GO, Rosenthal JS (1997) Shift-coupling and convergence rates of ergodic averages. Stoch Model 13(1):147–165

    MathSciNet  MATH  Google Scholar 

  • Roberts GO, Rosenthal JS (2004) General state space Markov chains and MCMC algorithms. Probab Surv 1:20–71

    Article  MathSciNet  Google Scholar 

  • Roberts GO, Tweedie RL (1996) Geometric convergence and central limit theorems for multidimensional hastings and metropolis algorithms. Biometrika 83(1):95–110

    Article  MathSciNet  Google Scholar 

  • Roberts GO, Tweedie RL (2000) Rates of convergence of stochastically monotone and continuous time Markov models. J Appl Probab 37(2):359–373

    Article  MathSciNet  Google Scholar 

  • Rosenthal JS (1995) Minorization conditions and convergence rates for Markov chain Monte Carlo. J Am Stat Assoc 90:558–566

    Article  MathSciNet  Google Scholar 

  • Rosenthal JS (2019) A First Look at Stochastic Processes. World Scientific Publishing Co.

  • Rosenthal JS (2020) Point process MCMC JavaScript simulation. Available at: probability.ca/pointproc

  • Ruslan S (2010) Learning deep Boltzmann machines using adaptive MCMC. ICML 2010 - Proceedings, 27th International Conference on Machine Learning, pages 943–950

  • Sanjib S (2017) Markov chain Monte Carlo methods for bayesian data analysis in astronomy. Ann Rev Astron Astrophys 55(1):213–259

    Article  Google Scholar 

  • Speagle JS (2020) A conceptual introduction to Markov chain Monte Carlo methods. https://arxiv.org/abs/1909.12313

  • Valderrama-Bahamóndez G, Fröhlich H (2019) MCMC techniques for parameter estimation of ODE based models in systems biology. Front Appl Math Stat 5:55

  • Chris W, Frederick AMIV (2015) Quantifying MCMC exploration of phylogenetic tree space. Syst Biol 64(3):472–491

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and referee for very helpful suggestions which have led to many improvements of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Rosenthal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y.H., Liu, T., Lou, Z. et al. Convergence Rates of Attractive-Repulsive MCMC Algorithms. Methodol Comput Appl Probab 24, 2029–2054 (2022). https://doi.org/10.1007/s11009-021-09909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-021-09909-y

Keywords

Navigation