Skip to main content

Several Topological Indices of Random Caterpillars

Abstract

In chemical graph theory, caterpillar trees have been an appealing model to represent the molecular structures of benzenoid hydrocarbon. Meanwhile, topological index has been thought of as a powerful tool for modeling quantitative structure-property relationship and quantitative structure-activity between molecules in chemical compounds. In this article, we consider a class of caterpillar trees that are incorporated with randomness, called random caterpillars, and investigate several popular topological indices of this random class, including Zagreb index, Randić index and Wiener index, etc. Especially, a central limit theorem is developed for the asymptotic distribution of the Zagreb index of random caterpillars.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Andrade E, Gomes H, Robbiano M (2017) Spectra and Randić spectra of caterpillar graphs and applications to the energy. MATCH Commun Math Comput Chem 77:61–75. MR 3645367

    MathSciNet  MATH  Google Scholar 

  2. Balaban A, Motoc I, Bonchev D, Mekenyan O (1983) Topological indices for structure-activity correlations. In: Austel V, Balaban A, Bonchev D, Charton M, Fujita T, Iwamura H, Mekenyan O, Motoc I (eds) Steric effects in drug design. Topics in Current Chemistry, vol 114. Springer, Berlin, Heidelberg, pp 21–55

  3. Balaji H, Mahmoud H (2017) The Gini index of random trees with an application to caterpillars. J Appl Probab 54:701–709. MR 3707823

    MathSciNet  MATH  Article  Google Scholar 

  4. Bereg S, Wang H (2007) Wiener indices of balanced binary trees. Discret Appl Math 155:457–467. MR 2296868

    MathSciNet  MATH  Article  Google Scholar 

  5. Bollobás B., Erdös P. (1998) Graphs of extremal weights. Ars Combin 50:225–233. MR 1670561

    MathSciNet  MATH  Google Scholar 

  6. Bollobás B, Erdös P, Sarkar A (1999) Extremal graphs for weights. Discret Math 200:5–19. MR 1692275

    MathSciNet  MATH  Article  Google Scholar 

  7. Darafsheh M, Khalifeh M, Jolany H (2013) The hyper-wiener index of one-pentagonal carbon nanocone. Curr Nanosci 9:557–569

    Article  Google Scholar 

  8. Devillers J, Balaban A (2000) Topological indices and related descriptors in QSAR and QSPR, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Domicolo C, Mahmoud H (2021) Degree-based Gini index for graphs. Probab Eng Inform Sci 34:157–171

    MathSciNet  MATH  Article  Google Scholar 

  10. Domicolo C, Zhang P, Mahmoud H (2019) The degree Gini index of several classes of random trees and their poissonized counterparts—An evidence for the duality theory. arXiv:1903.00086 [math.PR]

  11. El-Basil S (1987) Applications of caterpillar trees in chemistry and physics. J Math Chem 1:153–174. MR 0906155

    MathSciNet  Article  Google Scholar 

  12. El-Basil S (1990) Caterpillar (Gutman) trees in chemical graph theory. In: Gutman I, Cyvin S (eds) Advances in the theory of Benzenoid hydrocarbons. Topics in Current Chemistry, vol 153. Springer, Berlin, Heidelberg, pp 273–289

  13. Feng Q, Mahmoud H, Panholzer A (2008) Limit for the Randić index of random binary tree models. Ann Inst Statist Math 60:319–343. MR 2403522

    MathSciNet  MATH  Article  Google Scholar 

  14. Feng Q, Hu Z (2011) On the Zagreb index of random recursive trees. J Appl Probab 48:1189–1196. MR 2896676

    MathSciNet  MATH  Article  Google Scholar 

  15. Feng Q, Hu Z (2015) Asymptotic normality of the Zagreb index of random b-ary recursive trees. Dal’nevost Mat Zh 15:91–101. MR 3582623

    MathSciNet  MATH  Google Scholar 

  16. Fill J, Janson S (2009) Precise logarithmic asymptotics for the right tails of some limit random variables for random trees. Ann Comb 12:403–416. MR 2496125

    MathSciNet  MATH  Article  Google Scholar 

  17. Fuchs M, Lee CK (2015) The Wiener index of random digital trees. SIAM J Discret Math 29:586–614. MR 3324969

    MathSciNet  MATH  Article  Google Scholar 

  18. Gini C (1921) Measurement of inequality of incomes. Econ J 31:124–126

    Article  Google Scholar 

  19. Golbraikh A, Bonchev D, Tropsha A (2001) Novel chirality descriptors derived from molecular topology. J Chem Inf Comput Sci 41:147–158

    Article  Google Scholar 

  20. Golbraikh A, Bonchev D, Tropsha A (2002) Novel ZE-isomerism descriptors derived from molecular topology and their application to QSAR analysis. J Chem Inf Comput Sci 42:769–787

    Article  Google Scholar 

  21. Gutman I, Trinajstić N (1972) Graph theory and molecular orbitals. Total phi-electron energy of alternant hydrocarbons. Chem Phys Lett 17:535–538

    Article  Google Scholar 

  22. Gutman I, Ruščić B, Trinajstić N, Wilcox C (1975) Graph theory and molecular orbitals. XII. Acyclic polyenes. J Chem Phys 62:3399–3405

    Article  Google Scholar 

  23. Gutman I, El-Basil S (1985) Topological properties of Benzenoid systems. XXXVII. Characterization of certain chemical graphs. Z Naturforsch A 40:923–926. MR 0813290

    MathSciNet  Article  Google Scholar 

  24. Gutman I, Miljković O, Caporossi G, Hansen P (1999) Alkanes with small and large Randić connectivity index. Chem Phys Lett 306:366–372

    Article  Google Scholar 

  25. Gutman I, Araujo O, Morales D (2000) Estimating the connectvity index of saturated hydrocarbon. Indian J Chem 39A:381–385

    Google Scholar 

  26. Gutman I (2013) Degree-based topological indices. Croat Chem Acta 86:351–361

    Article  Google Scholar 

  27. Gutman I, Furtula B, Vukićević ZK, Popivoda G (2015) On Zagreb indices and coindices. MATCH Commun Math Comput Chem 74:5–16. MR 3379512

    MathSciNet  MATH  Google Scholar 

  28. Hall P, Heyde C (1980) Martingale limit theory and its application. Academic Press, Inc., New York. xii+ 308 pp. MR 0624435

    MATH  Google Scholar 

  29. Hoover E Jr (1936) The measurement of industrial localization. Rev Econ Stat 18:162–171

    Article  Google Scholar 

  30. Janson S (2003) The Wiener index of simply generated random trees. Random Struct Algoritm 22:337–358. MR 1980963

    MathSciNet  MATH  Article  Google Scholar 

  31. Khalifeh M, Yousefi-Azari H, Ashrafi A (2009) The first and second Zagreb indices of some graph operations. Discret Appl Math 157:804–811. MR 2499494

    MathSciNet  MATH  Article  Google Scholar 

  32. Karyven I (2018) Analytic results on the polymerisation random graph model. J Math Chem 56:140–157. MR 3742858

    MathSciNet  Article  Google Scholar 

  33. Li X, Shi Y (2008) A survey on the Randić index. MATCH Commun Math Comput Chem 59:127–156. MR 2378255

    MathSciNet  MATH  Google Scholar 

  34. Eliasi M, Ghalavand A (2016) Ordering of trees by multiplicative second Zagreb index. Trans Comb 5:49–55. MR 3462890

    MathSciNet  MATH  Google Scholar 

  35. Miličević A, Nikolić S (2004) On variable Zagreb indices. Croat Chem Acta 77:97–101

    Google Scholar 

  36. Munsonius G (2011) On the asymptotic internal path length and the asymptotic Wiener index of random split trees. Electron J Probab 16:1020–1047. MR 2820068

    MathSciNet  MATH  Article  Google Scholar 

  37. Munsonius G, Rüschendorf L (2011) Limit theorems for depths and distances in weighted random b-ary recursive trees. J Appl Probab 48:1060–1080. MR 2896668

    MathSciNet  MATH  Article  Google Scholar 

  38. Neininger R (2002) The Wiener index of random trees. Combin Probab Comput 11:587–597. MR 1940122

    MathSciNet  MATH  Article  Google Scholar 

  39. Nikolić S, Trinajstić N (1995) The Wiener index: Development and applications. Croat Chem Acta 68:105–129

    Google Scholar 

  40. Nikolić S, Tolić I, Trinajstić N (1999) On the complexity of molecular graphs. Match 40:187–201. MR 1729484

    MathSciNet  MATH  Google Scholar 

  41. Nikolić S, Kovačević G, Miličević A, Trinajstić N (2003) The Zagreb index 30 years after. Croat Chem Acta 76:113–124

    Google Scholar 

  42. Platt J (1947) Influence of neighbor bonds on additive bond properties in paraffins. J Chem Phys 15:419–420

    Article  Google Scholar 

  43. Rada J, Araujo O, Gutman I (2001) Randić index of benzenoid systems and phenylenes. Croat Chem Acta 74:225–235

    Google Scholar 

  44. Randić M (1975) Characterization of molecular branching. J Am Chem Soc 97:6609–6615

    Article  Google Scholar 

  45. Randić M (1993) Novel molecular descriptor for structure-property studies. Chem Phys Lett 2:478–483

    Article  Google Scholar 

  46. Randić M (2001) The connectivity index 25 years after. J Mol Graph Model 20:19–35

    Article  Google Scholar 

  47. Randić M (2008) On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun Math Comput Chem 59:5–124. MR 2378254

    MathSciNet  MATH  Google Scholar 

  48. Todeschini R, Consonni V (2009) Molecular descriptors for Chemoinformatics. Wiley, Hoboken, p 1257

    Book  Google Scholar 

  49. Wagner S (2012) On the Wiener index of random trees. Discret Math 312:1502–1511. MR 2899882

    MathSciNet  MATH  Article  Google Scholar 

  50. Wiener H (1947) Correlation of heats of isomerization, and differences in heats of vaporization of isomers, among the paraffin hydrocarbons. J Am Chem Soc 69:2636–2638

    Article  Google Scholar 

  51. Zhang P (2019) On several properties of a class of preferential attachment trees—plane-oriented recursive trees, Probab Eng Inform Sci. https://doi.org/10.1017/S0269964820000261

  52. Zhang P, Dey D (2019) The degree profile and Gini index of random caterpillar trees. Probab Eng Inform Sci 33:511–527

    MathSciNet  Article  Google Scholar 

  53. Zhang P (2019) The Zagreb index of several random models. arXiv:1901.04657

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Panpan Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, X. Several Topological Indices of Random Caterpillars. Methodol Comput Appl Probab (2021). https://doi.org/10.1007/s11009-021-09895-1

Download citation

Keywords

  • Caterpillar tree
  • Chemical graph theory
  • Central limit theorem
  • Martingale
  • Random caterpillars
  • Topological index

Mathematics Subject Classification (2010)

  • Primary: 05C80
  • 92E10
  • Secondary: 50C10
  • 60F05