Skip to main content

Modelling with the Novel INAR(1)-PTE Process


In this paper, the first-order non-negative integer-valued autoregressive process with Poisson-transmuted exponential innovations is introduced. Three estimation methods, namely, the conditional maximum likelihood, conditional least squares and Yule-Walker estimation methods are discussed to estimate the unknown parameters of the proposed process. Additionally, the simulation study is presented to assess the efficiencies of these estimation methods. Applications to two real-life data sets illustrate the usefulness of the proposed process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Andersson J, Karlis D (2014) A parametric time series model with covariates for integers in \(\mathbb {Z}\). Stat Model 14(2):135–156

    MathSciNet  Article  Google Scholar 

  2. Altun E (2019) A new generalization of geometric distribution with properties and applications. Commun Stat-Simul Comput:1–15

  3. Altun E (2020) A new one-parameter discrete distribution with associated regression and integer-valued autoregressive models. Math Slovaca 70(4):979–994

    MathSciNet  Article  Google Scholar 

  4. Altun E, Cordeiro GM, Ristić MM (2021a) An one-parameter compounding discrete distribution. J Appl Stat:1–22

  5. Altun E, Bhati D, Khan NM (2021b) A new approach to model the counts of earthquakes: INARPQX (1) process. SN Appl Sci 3(2):1–17

    Article  Google Scholar 

  6. Al-Osh M, Alzaid A (1987) First-order integer-valued autoregressive (INAR (1)) process. J Time Ser Anal 8(3):261–275

    MathSciNet  Article  Google Scholar 

  7. Al-Osh MA, Aly E. E. A. (1992) First order autoregressive time series with negative binomial and geometric marginals. Communications in Statistics-Theory and Methods 21(9):2483–2492

    MathSciNet  Article  Google Scholar 

  8. Alzaid A, Al-Osh M (1988) First-order integer-valued autoregressive (INAR (1)) process: distributional and regression properties. Stat Neerland 42 (1):53–61

    MathSciNet  Article  Google Scholar 

  9. Bhati D, Kumawat P, Gómez-Déniz E (2017) A new count model generated from mixed Poisson transmuted exponential family with an application to health care data. Commun Stat-Theory Methods 46(22):11060–11076

    MathSciNet  Article  Google Scholar 

  10. Bourguignon M, Weiß CH (2017) An INAR (1) process for modeling count time series with equidispersion, underdispersion and overdispersion. Test 26(4):847–868

    MathSciNet  Article  Google Scholar 

  11. Borges P, Bourguignon M, Molinares FF (2017) A generalised NGINAR (1) process with inflated-parameter geometric counting series. Austral New Zealand J Stat 59:137–150

    MathSciNet  Article  Google Scholar 

  12. Bourguignon M, Vasconcellos KLP (2015) Improved estimation for Poisson INAR (1) models. J Stat Comput Simul 85:2425–2441

    MathSciNet  Article  Google Scholar 

  13. Bourguignon M, Rodrigues J, Santos-Neto M (2019) Extended Poisson INAR (1) processes with equidispersion, underdispersion and overdispersion. J Appl Stat 46:101–118

    MathSciNet  Article  Google Scholar 

  14. Ghitany ME, Al-Mutairi DK, Nadarajah S (2008) Zero-truncated Poisson-Lindley distribution and its application. Mathematics and Computers in Simulation 79(3):279–287

    MathSciNet  Article  Google Scholar 

  15. Jazi MA, Jones G, Lai CD (2012) Integer valued AR (1) with geometric innovations. J Iranian Stat Soc 11(2):173–190

    MathSciNet  MATH  Google Scholar 

  16. Joe H (1997) Multivariate models and multivariate dependence concepts. Chapman & Hall, London

    Book  Google Scholar 

  17. Kim H, Lee S (2017) On first-order integer-valued autoregressive process with Katz family innovations. J Stat Comput Simul 87:546–562

    MathSciNet  Article  Google Scholar 

  18. Lívio T, Mamode Khan N, Bourguignon M, Bakouch H (2018) An INAR (1) model with Poisson-Lindley innovations. Econ Bull 38:1505–1513

    Google Scholar 

  19. McKenzie E (1985) Some simple models for discrete variate time series 1. JAWRA J Amer Water Resour Assoc 21:645–650

    Article  Google Scholar 

  20. McKenzie E (1986) Autoregressive moving-average processes with negative binomial and geometric marginal distrbutions. Adv Appl Probabx 18:679–705

    Article  Google Scholar 

  21. MohammadPour M, Bakouch H, Shirozhan M (2018) Poisson-lindley INAR(1) model with applications. Brazil J Probab Stat 32:262–280

    MathSciNet  Article  Google Scholar 

  22. Ristić MM, Bakouch HS, Nastić AS (2009) A new geometric first-order integer-valued autoregressive (NGINAR (1)) process. J Stat Plann Inference 139:2218–2226

    MathSciNet  Article  Google Scholar 

  23. Schweer S, Weiß CH (2014) Compound Poisson INAR (1) processes: stochastic properties and testing for overdispersion. Comput Stat Data Anal 77:267–284

    MathSciNet  Article  Google Scholar 

  24. Weiß CH (2018) An introduction to discrete-valued time series. Wiley

Download references

Author information



Corresponding author

Correspondence to Emrah Altun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altun, E., Khan, N.M. Modelling with the Novel INAR(1)-PTE Process. Methodol Comput Appl Probab (2021).

Download citation


  • Poisson-transmuted exponential distribution
  • INAR(1) process
  • Conditional maximum likelihood
  • Binomial thinning
  • Over-dispersion

Mathematics Subject Classification (2010)

  • 62E15