Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors

Abstract

We analyze a multi-processor two-stage tandem call center retrial queueing network in which the processors are subject to active breakdowns and repairs at stage-I. A level-dependent quasi-birth-and-death (LDQBD) process is formulated and a sufficient condition for ergodicity of the system is discussed. Under the stability condition, the stationary distribution of the number of calls in the system, the mean number of calls in the orbit, the mean waiting time of calls in the orbit and the mean busy period of the system along with other descriptors of the system are determined by using the matrix-analytic techniques. Besides, the availability analysis of the processors is also studied. Further, we have also discussed the characteristics of the first-passage time to reach the orbit critical level, the number of calls served in the call center during this period and their corresponding moments. Finally, extensive numerical results are presented to highlight the impact of the system parameters on the performance measures of the two-stage tandem call center retrial queueing system under investigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

References

  1. Aguir S, Karaesmen F, Aksin OZ, Chauvet F (2004) The impact of retrials on call center performance. OR Spectr 26:353–376

    MathSciNet  Article  Google Scholar 

  2. Aguir MS, Aksin OZ, Karaesmen F, Dallery Y (2008) On the interaction between retrials and sizing of call centers. Eur J Oper Res 191:398–408

    Article  Google Scholar 

  3. Aksin Z, Armony M, Mehrotra V (2007) The modern call center: a multi-disciplinary perspective on operations management research. Prod Oper Manag 16:665–688

    Article  Google Scholar 

  4. Apaolaza NM, Artalejo JR (2005) On the time to reach a certain orbit level in multi-server retrial queues. Appl Math Comput 168:686–703

    MathSciNet  MATH  Google Scholar 

  5. Artalejo JR, Gomez-Corral A (2008) Retrial queueing systems: a computational approach. Springer, Berlin

    Google Scholar 

  6. Artalejo JR, Pla V (2009) On the impact of customer balking, impatience and retrials in telecommunication systems. Comput Math Appl 57:217–229

    Article  Google Scholar 

  7. Artalejo JR (2010) Accessible bibliography on retrial queues: progress in 2000–2009. Math Comput Model 51:1071–1081

    MathSciNet  Article  Google Scholar 

  8. Baumann H, Sandmann W (2010) Numerical solution of level dependent quasi-birth-and-death processes. Procedia Comput Sci 1:1561–1569

    Article  Google Scholar 

  9. Baumann H, Sandmann W (2012) Steady state analysis of level dependent quasi-birth-and-death processes with catastrophes. Comput Oper Res 39:413–423

    MathSciNet  Article  Google Scholar 

  10. Bright L, Taylor PG (1995) Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Stoch Model 11:497–525

    MathSciNet  Article  Google Scholar 

  11. Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S, Zhao L (2005) Statistical analysis of a telephone call center: a queueing-science perspective. J Am Stat Assoc 100:36–50

    MathSciNet  Article  Google Scholar 

  12. Chen Y, Chen P, Zhu Y (2016) Analysis of a call center with partial closing rules, feedback and impatient calls. Int J Appl Math 46:585–591

    Google Scholar 

  13. Chen P, Chen Y (2017) Analysis of a call center with impatient customers and repairable server. AMSE J-AMSE IIETA 54:127–135

    Google Scholar 

  14. Colladon AF, Naldi M, Schiraldi MM (2013) Quality management in the design of TLC call centres. Int J Eng Bus Manag 5:1–9

    Article  Google Scholar 

  15. Diamond JE, Alfa AS (1998) The MAP/PH/1 retrial queue. Stoch Model 14:1151–1177

    MathSciNet  Article  Google Scholar 

  16. Essafi L, Bolch G (2005) Time dependent priorities in call centers. IJ Simul 6:32–38

    Google Scholar 

  17. Falin GI, Templeton JGC (1997) Retrial queues. Chapman and Hall, London

    Google Scholar 

  18. Gans N, Koole G, Mandelbaum A (2003) Telephone call centers: tutorial, review, and research prospects. Manuf Serv Oper Manag 5:79–141

    Article  Google Scholar 

  19. Gomez-Corral A (2006) A bibliographical guide to the analysis of retrial queues through matrix analytic techniques. Ann Oper Res 141:163–191

    MathSciNet  Article  Google Scholar 

  20. Hashizume K, Phung-Duc T, Kasahara S, Takahasi Y (2012) Queueing analysis of internet - based call centers with intractive voice response and redial. In: Proceedings of 2012 IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) Barcelona: 373–377

  21. Jouini O, Pot A, Koole G, Dallery Y (2010) Online scheduling policies for multiclass call centers with impatient customers. Eur J Oper Res 207:258–268

    MathSciNet  Article  Google Scholar 

  22. Jouini O, Koole G, Roubos A (2013) Performance indicators for call centers with impatient customers. IIE Trans 45:341–354

    Article  Google Scholar 

  23. Khudyakov P, Feigin PD, Mandelbaum A (2010) Designing a call center with an IVR (Interactive Voice Response). Queueing Syst 66:215–237

    MathSciNet  Article  Google Scholar 

  24. Kim JW, Park SC (2010) Outsourcing strategy in two-stage call centers. Comput Oper Res 37:790–805

    Article  Google Scholar 

  25. Kim C, Dudin A, Dudin S, Dudina O (2013) Tandem queueing system with impatient customers as a model of call center with interactive voice response. Perform Eval 70:440–453

    Article  Google Scholar 

  26. Kim C, Klimenok VI, Dudin AN (2016) Priority tandem queueing system with retrials and reservation of channels as a model of call center. Comput Ind Eng 96:61–71

    Article  Google Scholar 

  27. Klimenok V, Savko R (2013) A retrial tandem queue with two types of customers and reservation of channels. In: Proceedings of modern probabilistic methods for analysis of telecommunication networks, (BWWQT 2013), CCIS, vol 356, pp 105–114

  28. Koole G, Mandelbaum A (2002) Queueing models of call centers: an introduction. Ann Oper Res 113:41–59

    MathSciNet  Article  Google Scholar 

  29. Lebedev EA (2002) On the first passage time of removing level for retrial queues. Rep Nat Acad Sci Ukraine 3:47–50

    MathSciNet  MATH  Google Scholar 

  30. Li N a, Yu X, Matta A (2017) Modelling and workload reallocation of call centres with multi-type customers. Int J Prod Res 55:5664–5680

    Article  Google Scholar 

  31. Nazarov A, Phung-Duc T, Paul S (2018) Unreliable single-server queue with two-way communication and retrials of blocked and interrupted calls for cognitive radio networks. In: Proceedings of distributed computer and communication networks (DCCN 2018), CCIS, vol 919, pp 276–287

  32. Neuts MF (1981) Matrix-geometric solutions in stochastic models – an algorithmic approach. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  33. Senthil Kumar M, Dadlani A, Kim K (2018) Performance analysis of an unreliable M/G/1 retrial queue with two-way communication. Oper Res Int J, 1–14

  34. Srinivasan R, Talim J, Wang J (2004) Performance analysis of a call center with interactive voice response units. Sociedad de Estadıstica e Investigacion Operativa Top 12:91–110

    MathSciNet  MATH  Google Scholar 

  35. Tweedie RL (1975) Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math Proc Cambridge Philos Soc 78:125–136

    MathSciNet  Article  Google Scholar 

  36. Wang J, Srinivasan R (2008) Staffing a call center with interactive voice response units and impatient calls. In: Proceedings of international conference on service operations and logistics and informatics. IEEE, pp 514–519

  37. Zhang H (2010) Performance analysis in call centers with IVR and impatient customers. Journal of East China Normal University (Natural Sc 2010), 69–78

Download references

Acknowledgments

The authors are grateful to the anonymous referees and associate editor for their critical reading of the manuscript, fruitful suggestions and constructive comments that have improved the presentation and quality of this manuscript. This research work is supported in part by Department of Science and Technology, Government of India under grant INT/RUS/RFBR/377.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Krishna Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Proof

To prove the statement of the theorem, we mostly make use of the methodology of Diamond and Alfa (1998) and approach by Tweedie (1975). To this end, we now construct a discrete-time homogeneous LIQBD process with block square matrices

$$\overline{\mathbf{A}}_{M,0} = \mathbf{\Delta}_{M}^{-1}\mathbf{A}_{M,0}, \overline{\mathbf{A}}_{M,1} = \mathbf{\Delta}_{M}^{-1}\mathbf{A}_{M,1}+\mathbf{I}_{(M+1)(J_{1}+1)} \text{and} \overline{\mathbf{A}}_{M,2} = \mathbf{\Delta}_{M}^{-1}\mathbf{A}_{M,2}, $$

of order (M + 1)(J1 + 1) for upper diagonal, diagonal and lower diagonal matrices, respectively, where ΔM = −diag(AM,1) is the diagonal matrix of AM,1. Thus the transition probability matrix \(\overline {\mathbf {A}}_{M}=\overline {\mathbf {A}}_{M,0}+\overline {\mathbf {A}}_{M,1}+\overline {\mathbf {A}}_{M,2}\) of order (M + 1)(J1 + 1) is stochastic and irreducible with state space \(\boldsymbol {\overline {\chi }}\). The corresponding stationary distribution \(\mathbf {\overline {Y}}_{M}\) of \(\mathbf {\overline {A}}_{M}\) is obtained as

$$\overline{\mathbf{Y}}_{M}=\left[\left( \mathbf{Y}_{M} A_{M} \mathbf{e}_{(M+1)(J_{1}+1)\times 1}^{T}\right)^{-1}\mathbf{Y}_{M}{\Delta}_{M}\right]_{1\times(M+1)(J_{1}+1)}.$$

By using ρ < 1, i.e., \(\mathbf {Y}_{M}\mathbf {A}_{M,0} \mathbf {e}_{(M+1)(J_{1}+1)\times 1}^{T}<\mathbf {Y}_{M}\mathbf {A}_{M,2} \mathbf {e}_{(M+1)(J_{1}+1)\times 1}^{T}\), we have

$$\overline{\mathbf{Y}}_{M}\overline{\mathbf{A}}_{M,0} \mathbf{e}_{(M+1)(J_{1}+1)\times1}^{T}<\overline{\mathbf{Y}}_{M}\overline{\mathbf{A}}_{M,2} \mathbf{e}_{(M+1)(J_{1}+1)\times1}^{T}$$

which guarantees the ergodicity of the discrete-time LIQBD process.

We now define an irreducible and non-negative matrix \(\overline {\mathbf {A}}_{M}(z)=\overline {\mathbf {A}}_{M,0}+z\overline {\mathbf {A}}_{M,1}+z^{2}\overline {\mathbf {A}}_{M,2}\) for 0 ≤ z ≤ 1 and denote the spectral radius of \(\overline {\mathbf {A}}_{M}(z)\) as \(\chi (z)=sp(\mathbf {\overline {A}}_{M}(z))\). The rate matrix of the discrete time LIQBD process is denoted by R which is the minimal non-negative solution of the matrix quadratic equation

$$\overline{\mathbf{A}}_{M,0}+\mathbf{R} \overline{\mathbf{A}}_{M,1}+\mathbf{R^{2}} \overline{\mathbf{A}}_{M,2}=\mathbf{R}.$$

If \(\overline {\eta }=sp(\mathbf {R})\) is the spectral radius of R, then \(\overline {\eta }<1\) as ρ < 1. From the discussion in the proof of Lemma 1.3.4 in Neuts (1981), we have χ(z) < z for \(\overline {\eta }<z<1\). Let \(\mathbf {V}_{M}^{T}(z)\) be the right eigenvector of dimension (M + 1)(J1 + 1) × 1 of \(\overline {\mathbf {A}}_{M}(z)\) with strictly positive entries associated with χ(z), so that

$$ \overline{\mathbf{A}}_{M}(z) \mathbf{V}_{M}^{T}(z)=\chi(z) \mathbf{V}_{M}^{T}(z) < z \mathbf{V}_{M}^{T}(z), $$

whence

$$ \mathbf{A}_{M}(z) \mathbf{V}_{M}^{T}(z) < \textbf{0}^{T} \quad \text{for}\quad \overline{\eta} < z < 1, $$

where \(\mathbf {A}_{M}(z)=\mathbf {A}_{M,0}+z\mathbf {A}_{M,1}+z^{2}\mathbf {A}_{M,2}\) and 0T is zero (M + 1)(J1 + 1) × 1 - dimensional column vector.

Besides, for \(z\in (\overline {\eta },1),\) let us define a non-negative column vector, \(\boldsymbol {\phi }_{m,n}^{T}\), of dimension (m + 1)(J1 + 1) × 1 as

$$\boldsymbol{\phi}_{m,n}^{T}=z^{-n}\left[z^{M-m} \mathbf{w}_{m}(z) + a \mathbf{e}_{(m+1)(J_{1}+1)\times 1}^{T} \right]\quad \text{for} 0 \leq m \leq M \text{and} n \geq 1,$$

where we take a ∈ (0, 1) and the column sub-vector wm(z) consisting of the first (m + 1)(J1 + 1) elements of \(\mathbf {V}_M^T(z)\) is given by

$$\mathbf{w}_{m}(z)=\mathbf{E}_{m,m+1} \mathbf{E}_{m+1,m+2} {\cdots} \mathbf{E}_{M-1,M}\mathbf{V}_{M}^{T}(z)\quad \text{for} m=0,1,2,\cdots,M-1, $$
$$\mathbf{w}_{M}(z)=\mathbf{V}_{M}^{T}(z).$$

Based on which, we now construct the column vector, \(\boldsymbol {\phi }_n^T\), of entries \(\boldsymbol {\phi }_{m,n}^T\), for n ≥ 0, as

$$\boldsymbol{\phi}_{n}^{T} = z^{-n} \left[ \left( \begin{array}{c} z^{M} \mathbf{w}_{0}(z) \\ z^{M-1}\mathbf{w}_{1}(z) \\ z^{M-2}\mathbf{w}_{2}(z) \\ {\vdots} \\ z^{M-m}\mathbf{w}_{m}(z) \\ \vdots\\ z \mathbf{w}_{M-1}(z)\\ \mathbf{w}_{M}(z) \end{array} \right)_{{\Gamma}_{M}^{(n)}\times1}+a \mathbf{e}_{{\Gamma}_{M}^{(n)}\times1}^{T} \right] = \left[ \begin{array}{c} \boldsymbol{\phi}_{0,n}^{T} \\ \boldsymbol{\phi}_{1,n}^{T} \\ \boldsymbol{\phi}_{2,n}^{T}\\ \vdots\\ \boldsymbol{\phi}_{m,n}^{T}\\ \vdots\\ \boldsymbol{\phi}_{M-1,n}^{T} \\ \boldsymbol{\phi}_{M,n}^{T} \end{array} \right]_{{\Gamma}_{M}^{(n)}\times1,}$$

and the non-negative vector-valued test (or Lyapunov) function

$$\boldsymbol{\phi}^{T}=\left[\boldsymbol{\phi}_{0}^{T}, \boldsymbol{\phi}_{1}^{T}, \boldsymbol{\phi}_{2}^{T},\cdots,\boldsymbol{\phi}_{n}^{T},{\cdots} \right]_{.}^{T}$$

It is observed that each element of \(\boldsymbol {\phi }_{n}^{T}\) is bounded below for all n ≥ 0.

In order to prove the ergodicity, it is enough to prove that

$$\mathbf{Q}\boldsymbol{\phi}^{T} \leq -\epsilon \textbf{e}^{T}$$

holds for all but a finite number n ≥ 0 and for some 𝜖 > 0.

Now, we have for n = 1, 2, 3,⋯ ,

$$(\mathbf{Q}\boldsymbol{\phi}^{T})_{n}= \mathbf{A}_{n,2}\boldsymbol{\phi}_{n-1}^{T}+\mathbf{A}_{n,1}\boldsymbol{\phi}_{n}^{T}+\mathbf{A}_{n,0}\boldsymbol{\phi}_{n+1}^{T},$$

whence, for n ≥ 1, after some algebraic calculation,

$$ {(\mathbf{Q}\boldsymbol{\phi}^{T})_{n}} = z^{-(n+1)}\left[ \left( \begin{array}{c} z^{M} \mathbf{g}_{0}^{(n)}(z) \\ z^{M-1}\mathbf{g}_{1}^{(n)}(z) \\ z^{M-2}\mathbf{g}_{2}^{(n)}(z)\\ {\vdots} \\ z^{M-m}\mathbf{g}_{m}^{(n)}(z)\\ \vdots\\ z^{2}\mathbf{g}_{M-2}^{(n)}(z) \\ z \mathbf{g}_{M-1}^{(n)}(z)\\ \mathbf{g}_{M}^{(n)}(z) \end{array} \right)+a(1-z) \left( \begin{array}{c} \mathbf{0}_{{\gamma_{0}^{(n)}}}^{T}\mathbf{e}_{{\gamma_{0}^{(n)}}}^{T}-n\nu z \mathbf{e}_{{\gamma_{0}^{(n)}}}^{T} \\ \mathbf{A}_{n,0}^{1,2}\mathbf{e}_{{\gamma_{0}^{(n)}}}^{T}-n\nu z \mathbf{e}_{{\gamma_{1}^{(n)}}}^{T}\\ \mathbf{A}_{n,0}^{2,2}\mathbf{e}_{{\gamma_{1}^{(n)}}}^{T}-n\nu z \mathbf{e}_{{\gamma_{2}^{(n)}}}^{T}\\ \vdots\\ \mathbf{A}_{n,0}^{m,2}\mathbf{e}_{{\gamma_{(m-1)}^{(n)}}}^{T}-n\nu z \mathbf{e}_{{\gamma_{m}^{(n)}}}^{T}\\ \vdots\\ \mathbf{A}_{n,0}^{M-2,2}\mathbf{e}_{{\gamma_{M-3}^{(n)}}}^{T}-n\nu z \mathbf{e}_{{\gamma_{M-2}^{(n)}}}^{T}\\ \mathbf{A}_{n,0}^{M-1,2}\mathbf{e}_{{\gamma_{M-2}^{(n)}}}^{T}-n\nu z \mathbf{e}_{{\gamma_{M-1}^{(n)}}}^{T}\\ \mathbf{A}_{n,0}^{M,2}\mathbf{e}_{{\gamma_{M-1}^{(n)}}}^{T}+\mathbf{A}_{n,0}^{M,1} \mathbf{e}_{{\gamma_{M}^{(n)}}}^{T} \end{array} \right) \right],$$

where

$$\mathbf{g}_{0}^{(n)}(z)= \mathbf{A}_{n,1}^{0,0} \mathbf{w}_{1}(z) + z (\mathbf{A}_{n,1}^{0,1}+n \nu \mathbf{I}) \mathbf{w}_{0}(z),$$
$$\mathbf{g}_{m}^{(n)}(z)= \mathbf{A}_{n,1}^{m,0} \mathbf{w}_{m+1}(z) + z [(\mathbf{A}_{n,1}^{m,1}+n \nu \mathbf{I}) \mathbf{w}_{m}(z)+\mathbf{A}_{n,0}^{m,2}\mathbf{w}_{m-1}(z)]+z^{2} \mathbf{A}_{n,1}^{m,2}\mathbf{w}_{m-1}(z),$$

m = 1, 2,⋯ ,M − 1,

$$\mathbf{g}_{M}^{(n)}(z)=[\mathbf{A}_{M,0}+z\mathbf{A}_{M,1}+z^{2}\mathbf{A}_{M,2}]\mathbf{V}_{M}^{T}(z)$$
$$= \mathbf{A}_{M}(z) \mathbf{V}_{M}^{T}(z)$$

with \(\mathbf {e}_{\gamma _m^{(n)}}^T\) is a column vector of ones of dimension \(\gamma _m^{(n)}\times 1\) and I is the identity matrix of appropriate order.

Since \(\mathbf {A}_{M}(z) \mathbf {V}_{M}^{T}(z) < \mathbf {0}_{\gamma _{M}^{(n)}\times 1}^{T}\) and \((1-z)(\mathbf {A}_{n,0}^{M,2} \mathbf {e}_{\gamma _{M-1}^{(n)}}^{T}+\mathbf {A}_{n,0}^{M,1}\mathbf {e}_{\gamma _{M}^{(n)}}^{T})>\mathbf {0}_{\gamma _{M}^{(n)}\times 1}^{T}\) for all \(z\in (\overline {\eta },1),\) we can select a ∈ (0, 1) so that for n ≥ 0,

$$(\mathbf{Q} \boldsymbol{\phi}^{T})_{m,n} \leq -\epsilon \mathbf{e}^{T} \text{for} m=M$$

and

$$(\mathbf{Q} \boldsymbol{\phi}^{T})_{m,n} \rightarrow -\infty \quad as n \rightarrow \infty \text{for} m=0,1,2, \cdots,M-1.$$

Thus there exists an integer n0 and some 𝜖 > 0 such that

$$(\mathbf{Q} \boldsymbol{\phi}^{T})_{m,n} \leq -\epsilon \mathbf{e}^{T} \text{for} n\geq n_{0}.$$

Hence, we conclude that the process {X(t); t ≥ 0} is regular and ergodic according to Tweedie (1975) or statement 8, pp. 97 in Falin and Templeton (1997). □

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.K., Sankar, R., Krishnan, R.N. et al. Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors. Methodol Comput Appl Probab (2021). https://doi.org/10.1007/s11009-020-09842-6

Download citation

Keywords

  • Call center
  • Tandem queues
  • Orbit
  • Breakdown
  • First-step analysis
  • First-passage time

Mathematics Subject Classification (2010)

  • Primary 60K25; Secondary 90B22