Skip to main content
Log in

Heavy Traffic Limits for the Extreme Waiting Time in Multi-phase Queueing Systems

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

The main object of this research is a functional limit theorem under conditions of heavy traffic in multi-phase queueing systems. In this paper, limit theorems are proved for extreme values of important probabilistic characteristics of a queueing system, as well as maxima and minima of a waiting time and cumulative waiting time of a customer are investigated and illustrative numerical examples of simulation of multi-phase queueing systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger A, Whitt W (1995) Maximum values in queueing processes. Probab Eng Inf Sci 9(3):375–409

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley P (1968) Convergence of probability measures. Wiley, New York, p 352

    MATH  Google Scholar 

  • Borovkov A (1972) Probability processes in theory of queues. Nauka, Moscow, p 368

    Google Scholar 

  • Chang KH (1997) Extreme and high-level sojourns of the single-server queue in heavy traffic. Queueing Systems 27:17–35

    Article  MathSciNet  MATH  Google Scholar 

  • Girish K, Jian-Qiang H (1997) Higher order approximations for tandem queueing networks. Queueing Systems 25:325–337

    Article  Google Scholar 

  • Glynn PW, Whitt W (1991) Departures from many queues in series. Ann Appl Probab 1(4):546–572

    Article  MathSciNet  MATH  Google Scholar 

  • Glynn PW, Whitt W (1995) Heavy-traffic extreme-value limits for queues. Oper Res Lett 18:107–111

    Article  MathSciNet  MATH  Google Scholar 

  • Grigelionis B, Mikulevičius R (1987) Functional limit theorems for queueing systems in heavy traffic i, ii. Lietuvos Matematikos Rinkinys 27:660–673, 441–454

    MATH  Google Scholar 

  • Guo Y, Li Z (2017) Asymptotic variability analysis for a two-stage tandem queue, part i: the functional law of the iterated logarithm. J Math Anal Appl 450:1479–1509

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison J (1973) Assembly-like queues. J Appl Probab 10(2):354–367

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison J (1978) The diffusion approximation for tandem queues in heavy traffic. Adv Appl Probab 10:886–905

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison J, Reiman I (1981) Reflected brownian motion on an orthant. Ann Probab 9(2):302–308

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart D (1972) Extreme values in the GI/G/1 queue. Ann Math Stat 43:627–635

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart D (1973) Weak convergence in queueing theory. Adv Appl Probab 5:570–594

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart D, Whitt W (1970a) Multiple channel queues in heavy traffic i. Adv Appl Probab 2:150–177

  • Iglehart D, Whitt W (1970b) Multiple channel queues in heavy traffic. II: Sequences, Networks and Batches 2:355–369

  • Karpelevich FI, Kreı̆nin AY (1994) Heavy traffic limits for multiphase queues. Amer Mathematical Society. p. 143

  • Kendall D (1961) Some problems in the theory of queues. J R Stat Soc 13:161–185

    Google Scholar 

  • Kingman J (1962a) On queues in heavy traffic. J R Stat Soc 24:383–392

  • Kingman J (1962b) The single server queue in heavy traffic. Proc Camb Philol Soc 57:902–904

  • Kobyashi H (1974) Application of the diffusion approximation to queueing networks. J ACM 21:316–328

    Article  Google Scholar 

  • Kolmogorov AN (1950) Foundations of the theory of probability. Chelsea, New York

    Google Scholar 

  • Minkevičius S (1986) Weak convergence in multi-phase queues. Lietuvos Matematikos Rinkinys 26:717–722

    Google Scholar 

  • Minkevičius S (1991) Transient phenomena in multi-phase queueing systems. Lietuvos Matematikos Rinkinys 31:136–145

    MathSciNet  MATH  Google Scholar 

  • Pang G, Whitt W (2009) Heavy-traffic extreme value limits for erlang delay models. Queueing Systems 63:13–32

    Article  MathSciNet  MATH  Google Scholar 

  • Prokhorov Y (1963) Transient phenomena in queues. Lietuvos Matematikos Rinkinys 3:199–206

    Google Scholar 

  • Reiman M (1984) Open queueing networks in heavy traffic. Math Oper Res 9:441–459

    Article  MathSciNet  MATH  Google Scholar 

  • Sadowsky J, Szpankowski W (1992) Maximum queue length and waiting time revisited: multiserver G/G/c queue. Probab Eng Inf Sci 6(2):157–170

    Article  MATH  Google Scholar 

  • Sakalauskas L, Minkevičius S (2000) On the law of the iterated logarithm in open queueing networks. Eur J Oper Res 120:632–640

    Article  MathSciNet  MATH  Google Scholar 

  • Whitt W (1974) Heavy traffic limit theorems for queues: a survey. Lecture Notes in Economics and Mathematical Systems 98:307–350

    Article  MathSciNet  MATH  Google Scholar 

  • Zeevi A, Glynn W (2000) On the maximum workload of a queue fed by fractional brownian motion. Ann Appl Probab 10(4):1084–1099

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edvinas Greičius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkevičius, S., Greičius, E. Heavy Traffic Limits for the Extreme Waiting Time in Multi-phase Queueing Systems. Methodol Comput Appl Probab 21, 109–124 (2019). https://doi.org/10.1007/s11009-018-9641-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-018-9641-4

Keywords

Mathematics Subject Classification (2010)

Navigation