Ergodicity of Combocontinuous Adaptive MCMC Algorithms

  • Jeffrey S. RosenthalEmail author
  • Jinyoung Yang


This paper proves convergence to stationarity of certain adaptive MCMC algorithms, under certain assumptions including easily-verifiable upper and lower bounds on the transition densities and a continuous target density. In particular, the transition and proposal densities are not required to be continuous, thus improving on the previous ergodicity results of Craiu et al. (Ann Appl Probab 25(6):3592–3623, 2015).


Markov chain Monte Carlo Adaptive MCMC Ergodicity Dini’s theorem Piecewise continuous Combocontinuous 

Mathematics Subject Classifications (2010)

60J22 60J05 62M05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the anonymous reviewer for very helpful comments, which led to many improvements.


  1. Andrieu C, Atchadé YF (2007) On the efficiency of adaptive MCMC algorithms. Electron Commun Probab 12(33):336–349MathSciNetCrossRefzbMATHGoogle Scholar
  2. Andrieu C, Moulines E (2006) On the ergodicity properties of some adaptive Markov chain Monte Carlo algorithms. Ann Appl Probab 16(3):1462–1505MathSciNetCrossRefzbMATHGoogle Scholar
  3. Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Stat Comput 18:343–373MathSciNetCrossRefGoogle Scholar
  4. Atchadé YF, Rosenthal JS (2005) On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11(5):815–828MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bai Y, Roberts GO, Rosenthal JS (2011) On the containment condition for adaptive Markov chain Monte Carlo algorithms. Adv Appl Stat 21(1):1–54MathSciNetzbMATHGoogle Scholar
  6. Brooks S, Gelman A, Jones GL, Meng X (eds) (2011) Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC, Boca RatonzbMATHGoogle Scholar
  7. Craiu RV, Gray L, Latuszynski K, Madras N, Roberts GO, Rosenthal JS (2015) Stability of adversarial markov chains, with an application to adaptive mcmc algorithms. Ann Appl Probab 25(6):3592–3623MathSciNetCrossRefzbMATHGoogle Scholar
  8. Fort G, Moulines E, Priouret P (2011) Convergence of adaptive and interacting Markov chain Monte Carlo algorithms. Ann Stat 39(6):3262–3289MathSciNetCrossRefzbMATHGoogle Scholar
  9. Gaver DP, O’Muircheartaigh IG (1987) Robust empirical Bayes analyses of event rates. Technometrics 29(1):1–15MathSciNetCrossRefzbMATHGoogle Scholar
  10. George EI, Makov UE, Smith AFM (1993) Conjugate likelihood distributions. Scand J Stat 20(2):147–156MathSciNetzbMATHGoogle Scholar
  11. Giordani P, Kohn R (2010) Adaptive independent Metropolis–Hastings by fast estimation of mixtures of normals. J Comput Graph Sta. 19(2):243–259MathSciNetCrossRefGoogle Scholar
  12. Haario H, Saksman E, Tamminen J (2001) An adaptive Metropolis algorithm. Bernoulli 7(2):223–242MathSciNetCrossRefzbMATHGoogle Scholar
  13. Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16(4):339–354MathSciNetCrossRefGoogle Scholar
  14. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109MathSciNetCrossRefzbMATHGoogle Scholar
  15. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092CrossRefGoogle Scholar
  16. Roberts GO, Rosenthal JS (2004) General state space Markov chains and MCMC algorithms. Probab Surv 1:20–71MathSciNetCrossRefzbMATHGoogle Scholar
  17. Roberts GO, Rosenthal JS (2006) Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains. Ann Appl Probab 16(4):2123–2139MathSciNetCrossRefzbMATHGoogle Scholar
  18. Roberts GO, Rosenthal JS (2007) Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J Appl Probab 44(2):458–475MathSciNetCrossRefzbMATHGoogle Scholar
  19. Roberts GO, Rosenthal JS (2009) Examples of adaptive MCMC. J Comput Graph Stat 18(2):349–367MathSciNetCrossRefGoogle Scholar
  20. Rosenthal JS (2004) Adaptive MCMC Java applet.
  21. Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill, New YorkzbMATHGoogle Scholar
  22. Tierney L (1994) Markov chains for exploring posterior distributions. Ann Stat 1701–1728Google Scholar
  23. Turro E, Bochkina N, Hein AMK, Richardson S (2007) BGX: a Bioconductor package for the Bayesian integrated analysis of Affymetrix GeneChips. BMC bioinformatics 8(1):439–448CrossRefGoogle Scholar
  24. Vihola M (2012) Robust adaptive Metropolis algorithm with coerced acceptance rate. Stat Comput 22(5):997–1008MathSciNetCrossRefzbMATHGoogle Scholar
  25. Yang J (2016) Convergence and efficiency of adaptive MCMC. PhD thesis. Department of Statistical Sciences, University of Toronto. Unpublished thesisGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Statistical SciencesUniversity of TorontoTorontoCanada

Personalised recommendations