Advertisement

Polynomial Approximations for Bivariate Aggregate Claims Amount Probability Distributions

  • Pierre-Olivier GoffardEmail author
  • Stéphane Loisel
  • Denys Pommeret
Article

Abstract

A numerical method to compute bivariate probability distributions from their Laplace transforms is presented. The method consists in an orthogonal projection of the probability density function with respect to a probability measure that belongs to a Natural Exponential Family with Quadratic Variance Function (NEF-QVF). A particular link to Lancaster probabilities is highlighted. The procedure allows a quick and accurate calculation of probabilities of interest and does not require strong coding skills. Numerical illustrations and comparisons with other methods are provided. This work is motivated by actuarial applications. We aim at recovering the joint distribution of two aggregate claims amounts associated with two insurance policy portfolios that are closely related, and at computing survival functions for reinsurance losses in presence of two non-proportional reinsurance treaties.

Keywords

Bivariate aggregate claims model Bivariate distribution Bivariate laplace transform Numerical inversion of laplace transform Natural exponential families with quadratic variance functions Orthogonal polynomials 

Mathematics Subject Classification (2010)

60.08 62P05 65C20 33C45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate J, Choudhury GL, Whitt W (1995) On the Laguerre method for numerically inverting Laplace transforms. INFORMS J Comput 8(4):413–427CrossRefzbMATHGoogle Scholar
  2. Abate J, Choudhury GL, Whitt W (1998) Numerical inversion of multidimensional Laplace transform by the Laguerre method. Perform Eval 31(3):229–243CrossRefGoogle Scholar
  3. Ambagaspitiya RS (1998) On the distribution of a sum of correlated aggregate claims. Insur Math Econ 23(1):15–19MathSciNetCrossRefzbMATHGoogle Scholar
  4. Ambagaspitiya RS (1999) On the distributions of two classes of correlated aggregate claims. Insur Math Econ 24(3):301–308MathSciNetCrossRefzbMATHGoogle Scholar
  5. Barndorff-Nielsen O (1978) Information and exponential families in statistical theory. WileyGoogle Scholar
  6. Choudhury GL, Lucantoni D, Whitt W (1994) Multidimensional transform inversion application to the transient M / G / 1 queue. Ann Appl Probab 4(3):719–740MathSciNetCrossRefzbMATHGoogle Scholar
  7. Diaconis P, Griffiths R (2012) Exchangeables pairs of Bernouilli random variables, Krawtchouck polynomials, and Ehrenfest urns. Australian New Zealand J Stat 54(1):81–101MathSciNetCrossRefzbMATHGoogle Scholar
  8. Dowton F (1970) Bivariate exponential distributions in reliabilty theory. J R Stat Soc Ser B Methodol:408–417Google Scholar
  9. Goffard PO (2015) Approximations polynomiales de densités de probabilité et applications en assurance. PhD thesis. Aix-Marseille University, Avenue de LuminyGoogle Scholar
  10. Goffard PO, Loisel S, Pommeret D (2015) A polynomial expansion to approximate the ultimate ruin probability in the compound Poisson ruin model. J Comput Appl Math. In pressGoogle Scholar
  11. He Q, Nagaraja HN, Wu C (2013) Efficient simulation of complete and censored samples from common bivariate distributions. Comput Stat 28(6):2479–2494MathSciNetCrossRefzbMATHGoogle Scholar
  12. Hesselager O (1996) Recursions for certain bivariate counting distributions and their compound distributions. Astin Bull 26(1):35–52MathSciNetCrossRefGoogle Scholar
  13. Jin T, Ren J (2010) Recursions and fast fourier transforms for certain bivariate compound distributions. J Oper Risk 4:19CrossRefGoogle Scholar
  14. Jin T, Ren J (2014) Recursions and fast fourier transforms for a new bivariate aggregate claims model. Scand Actuar J 8:729–752MathSciNetCrossRefGoogle Scholar
  15. Koudou AE (1995) Problèmes de marges et familles exponentielles naturelles, PhD thesis, ToulouseGoogle Scholar
  16. Koudou AE (1996) Probabilités de Lancaster. Expo Math 14:247–276MathSciNetzbMATHGoogle Scholar
  17. Koudou AE (1998) Lancaster bivariate probability distributions with Poisson, negative binomial and gamma margins. Test 7(1):95–110MathSciNetCrossRefzbMATHGoogle Scholar
  18. Lancaster HO (1958) The structure of bivariate distributions. Ann Math Stat:719–736Google Scholar
  19. Marshall AW, Olkin L (1967) A multivariate exponential distribution. J Am Stat Assoc 62(317):30–44MathSciNetCrossRefzbMATHGoogle Scholar
  20. Mnatsakanov RM (2011) Moment-recovered approximations of multivariate distributions: the Laplace transform inversion. Stat Probab Lett 81(1):1–7MathSciNetCrossRefzbMATHGoogle Scholar
  21. Mnatsakanov RM, Sarkisian K (2013) A note on recovering the distribution from exponential moments. Appl Math Comput 219:8730–8737MathSciNetzbMATHGoogle Scholar
  22. Mnatsakanov RM, Sarkisian K, Hakobyan A (2015) Approximation of the ruin probability using the scaled Laplace transform inversion. Appl Math Comput 268:717–727MathSciNetGoogle Scholar
  23. Morris CN (1982) Natural exponential families with quadratic variance functions. Annal Math Stat 10(1):65–80MathSciNetCrossRefzbMATHGoogle Scholar
  24. Sundt B (1999) On multivariate Panjer recursions. Astin Bull 29(1):29–45MathSciNetCrossRefGoogle Scholar
  25. Szegö G (1939) Orthogonal Polynomials, volume XXIII. American mathematical society Colloquium publicationsGoogle Scholar
  26. Vernic R (1999) Recursive evaluation of some bivariate compound distibutions. Astin BullGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pierre-Olivier Goffard
    • 1
    Email author
  • Stéphane Loisel
    • 2
  • Denys Pommeret
    • 1
  1. 1.Institut de Mathematique de Marseille, Aix-Marseille UniversityMarseilleFrance
  2. 2.Université de LyonUniversité Claude Bernard Lyon 1, Institut de Science Actuarielle et FinancièreLyonFrance

Personalised recommendations