Methodology and Computing in Applied Probability

, Volume 18, Issue 3, pp 829–845 | Cite as

Option Pricing Under Jump-Diffusion Processes with Regime Switching

  • Nikita RatanovEmail author


We study an incomplete market model, based on jump-diffusion processes with parameters that are switched at random times. The set of equivalent martingale measures is determined. An analogue of the fundamental equation for the option price is derived. In the case of the two-state hidden Markov process we obtain explicit formulae for the option prices. Furthermore, we numerically compare the results corresponding to different equivalent martingale measures.


Jump-telegraph process Jump-diffusion process Martingales Relative entropy Financial modelling Option pricing Esscher transform 

Mathematics Subject Classification (2010)

91B28 60G44 60J75 60K99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellamy N, Jeanblanc M (2000) Incompleteness of markets driven by a mixed diffusion. Finance Stochast 4:209–222MathSciNetCrossRefzbMATHGoogle Scholar
  2. Delbaen F, Schachermayer W (1994) General version of the fundamental theorem of asset pricing. Mathematische Annalen 300:463–520MathSciNetCrossRefzbMATHGoogle Scholar
  3. Di Crescenzo A, Martinucci B, Zacks S (2014) On the geometric Brownian motion with alternating trend. In: Perna C, Sibillo M (eds) Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer, pp 81–85Google Scholar
  4. Di Crescenzo A, Ratanov N (2015) On jump-diffusion processes with regime switching: martingale approach. To appear in ALEA: Latin American Journal of Probability and Mathematical StatisticsGoogle Scholar
  5. Dybvig Ph H, Ross S A (2008) arbitrage. In: Durlauf S N, Blume L E (eds) The New Palgrave Dictionary of Economics. 2nd edn. Palgrave MacmillanGoogle Scholar
  6. Elliott R J, Chan L, Siu T K (2005) Option pricing and Esscher transform under regime switching. Ann Finance 1:423–432CrossRefzbMATHGoogle Scholar
  7. Frittelli M (2000) The minimal entropy martingale measure and the valuation problem in incomplete markets. Math Finance 10:215–225MathSciNetCrossRefzbMATHGoogle Scholar
  8. Fujiwara T, Miyahara Y (2003) The minimal entropy martingale measure for geometric Lévy processes. Finance Stochast 27:509–531MathSciNetCrossRefzbMATHGoogle Scholar
  9. Jacobsen M (2006) Point process theory and applications. Marked point and piecewise deterministic processes. Birkhäuser, BerlinzbMATHGoogle Scholar
  10. Jeanblanc M, Yor M, Chesney M (2009) Mathematical methods for financial markets. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  11. Kolesnik A D, Ratanov N (2013) Telegraph processes and option pricing. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  12. Melnikov A V, Ratanov N E (2007) Nonhomogeneous telegraph processes and their application to financial market modeling. Doklady Math 75:115–117MathSciNetCrossRefzbMATHGoogle Scholar
  13. Ratanov N (2007) A jump telegraph model for option pricing. Quant Finan 7:575–583MathSciNetCrossRefzbMATHGoogle Scholar
  14. Ratanov N (2010) Option pricing model based on a Markov-modulated diffusion with jumps. Braz J Probab Stat 24:413–431MathSciNetCrossRefzbMATHGoogle Scholar
  15. Ratanov N (2015) Telegraph processes with random jumps and complete market models. Methodol Comput Appl Prob 17:677–695.  10.1007/s11009-013-9388-x MathSciNetCrossRefzbMATHGoogle Scholar
  16. Runggaldier W J (2003) Jump diffusion models. In : Handbook of Heavy Tailed Distributions in Finance (S.T. Rachev, ed.), Handbooks in Finance, Book 1 (W.Ziemba Series Ed.), Elesevier/North-Holland, pp.169-209Google Scholar
  17. Weiss G H (1994) Aspects and applications of the random walk. North-Holland, AmsterdamzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Universidad del RosarioBogotáColombia

Personalised recommendations