Skip to main content
Log in

On the Accuracy of the MAP Inference in HMMs

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In a hidden Markov model, the underlying Markov chain is usually unobserved. Often, the state path with maximum posterior probability (Viterbi path) is used as its estimate. Although having the biggest posterior probability, the Viterbi path can behave very atypically by passing states of low marginal posterior probability. To avoid such situations, the Viterbi path can be modified to bypass such states. In this article, an iterative procedure for improving the Viterbi path in such a way is proposed and studied. The iterative approach is compared with a simple batch approach where a number of states with low probability are all replaced at the same time. It can be seen that the iterative way of adjusting the Viterbi state path is more efficient and it has several advantages over the batch approach. The same iterative algorithm for improving the Viterbi path can be used when it is possible to reveal some hidden states and estimating the unobserved state sequence can be considered as an active learning task. The batch approach as well as the iterative approach are based on classification probabilities of the Viterbi path. Classification probabilities play an important role in determining a suitable value for the threshold parameter used in both algorithms. Therefore, properties of classification probabilities under different conditions on the model parameters are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahl LR, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) IEEE Trans Inf Theory 20(2):284–287

    Article  MathSciNet  MATH  Google Scholar 

  • Brejová B, Brown DG, Vinař T (2007) The most probable annotation problem in HMMs and its application to bioinformatics. J Comput Syst Sci 73(7):1060–1077

    Article  MathSciNet  MATH  Google Scholar 

  • Brushe GD, Mahony RE, Moore JB (1998) A soft output hybrid algorithm for ML/MAP sequence estimation. IEEE Trans Inf Theory 44(7):3129–3134

    Article  MathSciNet  MATH  Google Scholar 

  • Cao L, Chen CW (2003) A novel product coding and recurrent alternate decoding scheme for image transmission over noisy channels. IEEE Trans Commun 51(9):1426–1431

    Article  MathSciNet  Google Scholar 

  • Cappé O, Moulines E, Rydén T (2005) Inference in hidden Markov models. Springer, New York

    MATH  Google Scholar 

  • Colella S, Yau C, Taylor JM, Mirza G, Butler H et al (2007) QuantiSNP: an objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucl Acids Res 35(6):2013–2025

    Article  Google Scholar 

  • Doob JL (1953) Stochastic processes. Wiley, New York

    MATH  Google Scholar 

  • Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ephraim Y, Merhav N (2002) Hidden Markov processes. IEEE Trans Inf Theory 48(6):1518–1569

    Article  MathSciNet  MATH  Google Scholar 

  • Gerencsér L, Molnár-Sáska G (2002) A new method for the analysis of hidden Markov model estimates. In: Proceedings of the 15th IFAC world congress, Barcelona, Spain

  • Hayes JF, Cover TM, Riera JB (1982) Optimal sequence detection and optimal symbol-by-symbol detection: similar algorithms. IEEE Trans Commun 30(1):152–157

    Article  MATH  Google Scholar 

  • Jelinek F (1997) Statistical methods for speech recognition. The MIT Press, Cambridge

    Google Scholar 

  • Koloydenko A, Lember J (2008) Infinite Viterbi alignments in the two state hidden Markov models. Acta Comment Univ Tartu Math 12:109–124

    MathSciNet  MATH  Google Scholar 

  • Koski T (2001) Hidden Markov models for bioinformatics, volume 2 of computational biology series. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Kuljus K, Lember J (2012) Asymptotic risks of Viterbi segmentation. Stoch Process Appl 122(9):3312–3341

    Article  MathSciNet  MATH  Google Scholar 

  • Le Gland F, Mevel L (2000) Exponential forgetting and geometric ergodicity in hidden Markov models. Math. Control Signals Systems 13(1):63–93

    Article  MathSciNet  MATH  Google Scholar 

  • Lember J (2011a) A correction on approximation of smoothing probabilities for hidden Markov models. Stat Probab Lett 81(9):1463–1464

    Article  MathSciNet  MATH  Google Scholar 

  • Lember J (2011b) On approximation of smoothing probabilities for hidden Markov models. Stat Probab Lett 81(2):310–316

    Article  MathSciNet  MATH  Google Scholar 

  • Lember J, Koloydenko A (2008) The adjusted Viterbi training for hidden Markov models. Bernoulli 14(1):180–206

    Article  MathSciNet  MATH  Google Scholar 

  • Lember J, Koloydenko A (2010) A constructive proof of the existence of Viterbi processes. IEEE Trans Inf Theory 56(4):2017–2033

    Article  MathSciNet  Google Scholar 

  • Lember J, Koloydenko A (2014) Bridging Viterbi and posterior decoding: a generalized risk approach to hidden path inference based on hidden Markov models. J Mach Learn Res 15 :1–58

    MathSciNet  MATH  Google Scholar 

  • Lember J, Kuljus K, Koloydenko A (2011) Theory of segmentation. In: Dymarsky P (ed) Hidden Markov models, theory and applications. InTech, pp 51–84

  • Li J, Gray RM, Olshen RA (2000) Multiresolution image classification by hierarchical modeling with two-dimensional hidden Markov models. IEEE Trans Inform Theory 46(5):1826–1841

    Article  MathSciNet  MATH  Google Scholar 

  • Och FJ, Ney H (2000) Improved statistical alignment models. In: Proc 38th ann meet assoc comput linguist, pp 440–447

  • Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Rue H (1995) New loss functions in Bayesian imaging. J Am Stat Assoc 90 (431):900–908

    Article  MathSciNet  MATH  Google Scholar 

  • Sznitman R, Jedynak B (2010) Active testing for face detection and localization. IEEE Trans Pattern Anal Mach Intell 32(10):1914–1920

    Article  Google Scholar 

  • Udupa RU, Maji HK (2005) Theory of alignment generators and applications to statistical machine translation. In: Kaelbling LP, Saffiotti A (eds) Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05), Edinburgh, Scotland, pp 1142–1147

  • Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269

    Article  MATH  Google Scholar 

  • Wang K, Li M, Hadley D, Liu R, Glessner J et al (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674

    Article  Google Scholar 

  • Winkler G (2003) Image analysis, random fields and Markov Chain Monte Carlo methods, volume 27 of stochastic modelling and applied probability. Springer, Berlin

    Book  Google Scholar 

  • Yau C, Holmes CC (2013) A decision-theoretic approach for segmental classification. Ann Appl Stat 7(3):1814–1835

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristi Kuljus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuljus, K., Lember, J. On the Accuracy of the MAP Inference in HMMs. Methodol Comput Appl Probab 18, 597–627 (2016). https://doi.org/10.1007/s11009-015-9443-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-015-9443-x

Keywords

Mathematics Subject Classification (2010)

Navigation