Skip to main content
Log in

A Law of the Iterated Logarithm for the Sojourn Time Process in Queues in Series

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

The object of this research in the sphere of queueing theory is the law of the iterated logarithm under the conditions of heavy traffic in queues in series. In this paper, the laws of the iterated logarithm are proved for the values of important probabilistic characteristics of the queueing system, like the sojourn time of a customer, and maximum of the sojourn time of a customer. Also, we prove that the sojourn time of a customer can be approximated by some recurrent functional. We also provide the results of statistical simulations for various system parameters and distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen S (1998) Extreme value theory for queues via cycle maxima. Extremes 1(2):137–168

    Article  MathSciNet  MATH  Google Scholar 

  • Berger A, Whitt W (1995) Maximum values in queueing processes. Probab Eng Inf Sci 9:375–409

    Article  MathSciNet  Google Scholar 

  • Billingsley P (1968) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  • Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Bingham NH (1986) Variants of the law of the iterated logarithm. Bull Lond Math Soc 18:433–467

    Article  MathSciNet  MATH  Google Scholar 

  • Borovkov A (1972) Stochastic processes in queueing theory. Nauka, Moscow. In Russian

    MATH  Google Scholar 

  • Borovkov A (1980) Asymptotic methods in theory of queues. Nauka, Moscow. In Russian

    MATH  Google Scholar 

  • Boxma OJ (1979) On a tandem queuing model with identical service times at both counters I, II. Adv Appl Probab 11(3):616–643, 644–659

    MathSciNet  MATH  Google Scholar 

  • Boxma OJ, Deng Q (2000) Asymptotic behaviour of the tandem queuing system with identical service times at both queues. Math Meth Oper Res 2(52):3017–3323

    MathSciNet  MATH  Google Scholar 

  • Chen H, Mandelbaum A (1991) Stochastic discrete flow networks: diffusion approximations and bottlenecks. Ann Probab 1(19):1463–1519

    Article  MathSciNet  MATH  Google Scholar 

  • Coffman EGJ, Reiman MI (1984) Diffusion approximation for computer communication systems. Math Comput Perform Reliab 1:33–53

    MathSciNet  Google Scholar 

  • Cohen J (1973) Asymptotic relations in queueing theory. Stoch Process Appl 1(1):107–124

    Article  MathSciNet  MATH  Google Scholar 

  • Falin G, Sukharev Y (1988) Singularly perturbed equations and an asymptotic study of the stationary characteristics of systems with repeated calls. Vestnik Moskov Univ Ser I Mat Mekhanika 7–10,103

  • Flores C (1985) Diffusion approximations for computer communications networks. Am Math Soc 83–124

  • Glynn PW (1990) Diffusion approximations. Handb Oper Res Manag Sci Stoch Model 2

  • Glynn PW, Whitt W (1986) A central-limit-theorem version of L = λW. Queueing Syst Theor Appl 1(2):191–215

    Article  MathSciNet  MATH  Google Scholar 

  • Glynn PW, Whitt W (1987) Sufficient conditions for functional limit theorem versions of L = λW. Queueing Syst 1:279–287

    Article  MathSciNet  MATH  Google Scholar 

  • Glynn PW, Whitt W (1988) A LIL version of L = λW. Math Oper Res 13(4):693–710

    Article  MathSciNet  MATH  Google Scholar 

  • Glynn PW, Whitt W (1995) Heavy-traffic extreme-value limits for queues. Oper Res Lett 18:107–111

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison J, Nguyen V (1993) Brownian models of multiclass queueing networks: current status and open problems. Queueing Syst 13:5–40

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison JM, Lemoine AJ (1981) A note on networks of infinite-server queues. J Appl Probab 18:561–567

    Article  MathSciNet  MATH  Google Scholar 

  • Hong C, Xinyang S (2000) Strong approximations for multiclass feedforward queueing networks. Ann Appl Probab 10(3):828–876

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart DL (1971a) Functional limit theorems for the GI / G/1 queue in light traffic. Adv Appl Probab 3:269–281

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart DL (1971b) Multiple channel queues in heavy traffic. IV: Law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17:168–180

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart DL (1972) Extreme values in the GI / G/1 queue. Ann Math Stat 43:627–635

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart DL, Whitt W (1970a) Multiple channel queues in heavy traffic. II: Sequences, networks and batches. Adv Appl Probab 2:355–369

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart DL, Whitt W (1970b) Multiple channel queues in heavy traffic. I. Adv Appl Probab 2:150–177

    Article  MathSciNet  MATH  Google Scholar 

  • Ivcenko GI, Kastanov VA, Kovalenko IN (1982) Queueing system theory. Vishaja Skola, Moscow. In Russian

    Google Scholar 

  • Johnson DP (1983) Diffusion approximations for optimal filtering of jump processes and for queueing networks. University of Wisconsin. 1. Ph.D. dissertation

  • Karpelevich FI, Kreinin AI (1990) Asymptotic analysis of switching systems for telegraph-type messages. Problemy Peredachi Informatsii 26(3):83–95. In Russian

    MathSciNet  MATH  Google Scholar 

  • Karpelevich FI, Kreinin AI (1994) Heavy traffic limits for multiphase queues. American Mathematical Society, Providence

  • Kingman J (1961) On queues in heavy traffic. J R Statist Soc 24:383–392

    MathSciNet  MATH  Google Scholar 

  • Kingman J (1962) The single server queue in heavy traffic. Proc Camb Phil Soc 57:902–904

    Article  MathSciNet  MATH  Google Scholar 

  • Knessl C, Morrison JA (1991) Heavy-traffic analysis of the sojourn time in a three-mode Jackson network with overtaking. Queueing Syst 8(2):165–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kobayashi H (1974) Application of the diffusion approximation to queueing networks. J ACM 21:316–328

    Article  MATH  Google Scholar 

  • Kuo-Hwa C (1997) Extreme and high-level sojourns of the single server queue in heavy traffic. Queueing Syst. Theor. Appl. 1(27):17–35

    MathSciNet  MATH  Google Scholar 

  • Lemoine AJ (1978) Network of queues – a survey of weak convergence results. Manag Sci 24:1175–1193

    Article  MathSciNet  MATH  Google Scholar 

  • McCormick W, Sung PY (1992) Approximating the distribution of the maximum queue length for M/M/s queues. In: Bhat U, Basawa V (eds) Queueing and related models, vol 9. Oxford Statistical Science Series, pp 240–261

  • Minkevičius S, Steišūnas S (2006) About the sojourn time process in multiphase queueing systems. Methodol Comput Appl Probab 8(2):293–302

    Article  MathSciNet  MATH  Google Scholar 

  • Minkevičius S (1986) Weak convergence in multiphase queues. Lietuvos Matematikos Rinkinys 26:717–722. In Russian

    Google Scholar 

  • Minkevičius S (1995) On the law of the iterated logarithm in multiphase queueing systems. Lietuvos Matematikos Rinkinys 35:360–366. In Russian

    MathSciNet  MATH  Google Scholar 

  • Minkevičius S (1997) On the law of the iterated logarithm in multiphase queueing systems. II. Informatica 8:367–376

    MathSciNet  MATH  Google Scholar 

  • Minkevičius S (2013) On the law of the iterated logarithm in multiserver open queueing networks. http://www.tandfonline.com/doi/pdf/10.1080/17442508.2012.755625

  • Minkevičius S, Steišūnas S (2003) A law of the iterated logarithm for global values of waiting time in multiphase queues. Stat Probab Lett 61(4):359–371

    Article  MathSciNet  MATH  Google Scholar 

  • Qin ZH, Hui XG (1992) Strong approximations for the open queueing network in heavy traffic. Sci China 35(Ser. A No. 5):521–535

    MathSciNet  Google Scholar 

  • Reiman MI, Simon B, Willie JS (1992) Simterpolation: a simulation based interpolation approximation for queueing system. Oper Res 40:706–723

    Article  MathSciNet  MATH  Google Scholar 

  • Reiman MI (1982) The heavy traffic diffusion approximation for sojourn times in Jackson networks. Appl Probab Comput Sci Interface II(3):409–421

    Article  MathSciNet  MATH  Google Scholar 

  • Reiman MI (1984) Open queueing networks in heavy traffic. Math Oper Res 9:441–459

    Article  MathSciNet  MATH  Google Scholar 

  • Reiman MI, Simon B (1990) A network of priority queues in heavy traffic: one bottleneck station. Queueing Syst 1:33–57

    Article  MathSciNet  MATH  Google Scholar 

  • Reiman MI, Wein LM (1999) Heavy traffic analysis of polling systems in tandem. Operations Research 47(4):524–534

    Article  MathSciNet  MATH  Google Scholar 

  • Saati T, Kerns K (1971) Analytic planning. Organization of systems. MIR, Moscow. In Russian

    Google Scholar 

  • Sakalauskas L, Minkevičius S (2000) On the law of the iterated logarithm in open queueing networks. Eur J Oper Res 120:632–640

    Article  MathSciNet  MATH  Google Scholar 

  • Serfozo R (1988a) Extreme values of birth and death processes and queues. Stochast Process Appl 27:291–306

    Article  MathSciNet  MATH  Google Scholar 

  • Serfozo R (1988b) Extreme values of queue length in M/G/1 and GI/M/1 systems. Math Oper Res 13(2):349–357

    Article  MathSciNet  MATH  Google Scholar 

  • Strassen V (1964) An invariance principle for the law of the iterated logarithm. Zeitschrift fürWahrscheinlichkeitstheorie und Verwandte Gebiete 3(3):211–226

    Google Scholar 

  • Sung PY (1994) Asymptotic distributions of maximum queue lengths for M/G/1 and G I/M/1 systems. J Korean Statist Soc 24(1):19–29

    MathSciNet  Google Scholar 

  • Szczotka W, Kelly FP (1990) Asymptotic stationarity of queues in series and the heavy traffic approximation. Ann Probab 18(3):1232–1248

    Article  MathSciNet  MATH  Google Scholar 

  • Whitt W (1974) Heavy traffic limit theorems for queues: a survey. In Lecture Notes in Economics and Mathematical Systems, vol 98, pp. 307–350

  • Whitt W (1982) On the heavy-traffic limit theorem for GI/G/1 queues. Adv Appl Probab 14:171–190

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimiras Dolgopolovas.

Additional information

Research supported in part by the National Complex Programme “Theoretical and Engineering aspects of e-service technology creation and application in high-performing calculation platforms”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minkevičius, S., Dolgopolovas, V. & Sakalauskas, L.L. A Law of the Iterated Logarithm for the Sojourn Time Process in Queues in Series. Methodol Comput Appl Probab 18, 37–57 (2016). https://doi.org/10.1007/s11009-014-9402-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-014-9402-y

Keywords

AMS 2000 Subject Classification

Navigation