Skip to main content
Log in

Testing Serial Independence via Density-Based Measures of Divergence

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

This article reviews some nonparametric serial independence tests based on measures of divergence between densities. Among others, the well-known Kullback–Leibler, Hellinger, Tsallis, and Rosenblatt divergences are analyzed. Moreover, their copula-based version is taken into account. Via a wide simulation study, the performances of the considered serial independence tests are compared under different settings. Both single-lag and multiple-lag testing procedures are investigated to find out the best “omnibus” solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I, Li Q (1997) Testing independence by nonparametric kernel method. Stat Probab Lett 34(2):201–210

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson N, Hall P, Titterington D (1994) Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates. J Multivar Anal 50(1):41–54

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J R Stat Soc, Ser B Stat Methodol 65(2):367–389

    Article  MATH  MathSciNet  Google Scholar 

  • Bagnato L, Punzo A (2010) On the use of χ 2-test to check serial independence. Statistica & Applicazioni VIII(1):57–74

    Google Scholar 

  • Bagnato L, Punzo A (2012) Checking serial independence of residuals from a nonlinear model. In: Okada A, Imaizumi T, Bock H-H, Gaul W (eds) Challenges at the interface of data analysis, computer science, and optimization. Studies in classification, data analysis and knowledge organization. Springer, Berlin, pp 203–211

    Chapter  Google Scholar 

  • Bagnato L, Punzo A, Nicolis O (2012) The autodependogram: a graphical device to investigate serial dependences. J Time Ser Anal 33(2):233–254

    Article  MathSciNet  Google Scholar 

  • Barrientos-Marin J, Sperlich S (2010) The size problem of bootstrap tests when the null is non-or semiparametric. Rev Colomb Estad 33(2):307–319

    MathSciNet  Google Scholar 

  • Bellman R (1961) Adaptive control processes. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Chan N, Tran L (1992) Nonparametric tests for serial dependence. J Time Ser Anal 13(1):19–28

    Article  MATH  MathSciNet  Google Scholar 

  • Delgado M (1996) Testing serial independence using the sample distribution function. J Time Ser Anal 17(3):271–285

    Article  MATH  MathSciNet  Google Scholar 

  • Delgado M, Mora J (2000) A nonparametric test for serial independence of regression errors. Biometrika 87(1):228–234

    Article  MATH  MathSciNet  Google Scholar 

  • Diks C (2009) Nonparametric tests for independence. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 6252–6271

    Chapter  Google Scholar 

  • Diks C, Panchenko V (2007) Nonparametric tests for serial independence based on quadratic forms. Stat Sin 17(1):81–89

    MATH  Google Scholar 

  • Diks C, Panchenko V (2008) Rank-based entropy tests for serial independence. Stud Nonlinear Dyn Econom 12(1):1–19

    MathSciNet  Google Scholar 

  • Dionísio A, Menezes R, Mendes D (2006) Entropy-based independence test. Nonlinear Dyn 44(1):351–357

    Article  MATH  Google Scholar 

  • Dufour J, Roy R (1985) Some robust exact results on sample autocorrelations and tests of randomness. J Econom 29(3):257–273

    Article  MATH  MathSciNet  Google Scholar 

  • Durbin J, Watson G (1950) Testing for serial correlation in least squares regression. I. Biometrika 37(3–4):409–428

    MATH  MathSciNet  Google Scholar 

  • Durbin J, Watson G (1951) Testing for serial correlation in least squares regression. II. Biometrika 38(1–2):159–177

    Article  MATH  MathSciNet  Google Scholar 

  • Fernandes M, Néri B (2010) Nonparametric entropy-based tests of independence between stochastic processes. Econom Rev 29(3):276–306

    Article  MATH  Google Scholar 

  • Ghoudi K, Kulperger R, Rémillard B (2001) A nonparametric test of serial independence for time series and residuals. J Multivar Anal 79(2):191–218

    Article  MATH  Google Scholar 

  • Granger C, Lin J (1994) Using the mutual information coefficient to identify lags in nonlinear models. J Time Ser Anal 15(4):371–384

    Article  MATH  MathSciNet  Google Scholar 

  • Granger C, Maasoumi E, Racine J (2004) A dependence metric for possibly nonlinear processes. J Time Ser Anal 25(5):649–669

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P, Wolff R (1995) On the strength of dependence of a time series generated by a chaotic map. J Time Ser Anal 16(6):571–583

    Article  MATH  MathSciNet  Google Scholar 

  • Hallin M, Mélard G (1988) Rank-based tests for randomness against first-order serial dependence. J Am Stat Assoc 83(404):1117–1128

    Article  Google Scholar 

  • Härdle W, Marron J (1990) Semiparametric comparison of regression curves. Ann Stat 18(1):63–89

    Article  MATH  Google Scholar 

  • Härdle W, Marron J (1991) Bootstrap simultaneous error bars for nonparametric regression. Ann Stat 19(2):778–796

    Article  MATH  Google Scholar 

  • Hong Y (1999) Hypothesis testing in time series via the empirical characteristic function: a generalized spectral density approach. J Am Stat Assoc 94(448):1201–1220

    Article  MATH  Google Scholar 

  • Hong Y (2000) Generalized spectral tests for serial dependence. J R Stat Soc, Ser B Stat Methodol 62(3):557–574

    Article  MATH  MathSciNet  Google Scholar 

  • Hong Y, White H (2005) Asymptotic distribution theory for nonparametric entropy measures of serial dependence. Econometrica 73(3):837–901

    Article  MATH  MathSciNet  Google Scholar 

  • Kallenberg W (2009) Estimating copula densities, using model selection techniques. Insur, Math Econ 45(2):209–223

    Article  MATH  MathSciNet  Google Scholar 

  • King M (1987) Testing for autocorrelation in linear regression models: a survey. In: King M, Giles D (eds) Specification analysis in the linear model: in honour of Donald Cochrane. Routledge & Kegan Paul, London, pp 19–73

    Google Scholar 

  • Ljung G, Box G (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297–303

    Article  MATH  MathSciNet  Google Scholar 

  • Maasoumi E, Racine J (2002) Entropy and predictability of stock market returns. J Econom 107(1–2):291–312

    Article  MATH  MathSciNet  Google Scholar 

  • Moran P (1948) Some theorems on time series II. The significance of the serial correlation coefficient. Biometrika 35(3–4):255–260

    MATH  MathSciNet  Google Scholar 

  • Mortara G (1922) Lezioni di statistica. Società Tipografica “Leonardo da Vinci”, Città di Castello

  • Pinkse J (1998) A consistent nonparametric test for serial independence. J Econom 84(2):205–231

    Article  MATH  MathSciNet  Google Scholar 

  • Pompe B (1993) Measuring statistical dependences in a time series. J Stat Phys 73(3):587–610

    Article  MATH  MathSciNet  Google Scholar 

  • R Development Core Team (2012). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  • Racine J, Maasoumi E (2007) A versatile and robust metric entropy test of time-reversibility, and other hypotheses. J Econom 138(2):547–567

    Article  MathSciNet  Google Scholar 

  • Robinson P (1991) Consistent nonparametric entropy-based testing. Rev Econ Stud 58(3):437–453

    Article  MATH  Google Scholar 

  • Rosenblatt M (1975) A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann Stat 3(1):1–14

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenblatt B, Wahlen BE (1992) A nonparametric measure of independence under a hypothesis of independent components. Stat Probab Lett 15(3):245–252

    Article  MATH  MathSciNet  Google Scholar 

  • Skaug H (1994) On the quality of the normal approximation in nonparamentric functional estimation. Technical report, University of Bergen, Bergen

  • Skaug H, Tjøstheim D (1993a) Measures of distance between densities with application to testing for serial independence. Technical report, University of Bergen, Bergen

  • Skaug HJ, Tjøstheim D (1993b) A nonparametric test of serial independence based on the empirical distribution function. Biometrika 80(3):591–602

    Article  MATH  MathSciNet  Google Scholar 

  • Skaug HJ, Tjøstheim D (1993c) Nonparametric tests for serial independence. In: Subba Rao T (ed) Developments in time series analysis: the Priestley birthday volume. Chapman & Hall, London, pp 207–229

    Chapter  Google Scholar 

  • Skaug HJ, Tjøstheim D (1996) Measures of distance between densities with application to testing for serial independence. In: Robinson P, Rosenblatt M (eds) Time series analysis in memory of E.J. Hannan. Springer, New York, pp 363–377

    Google Scholar 

  • Tjøstheim D (1996) Measures of dependence and tests of independence. Statistics 28(3):249–284

    Article  MathSciNet  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52(1):479–487

    Article  MATH  MathSciNet  Google Scholar 

  • Tsallis C (1998) Generalized entropy-based criterion for consistent testing. Phys Rev E 58(2):1442–1445

    Google Scholar 

  • Wald A, Wolfowitz J (1943) An exact test for randomness in the non-parametric case based on serial correlation. Ann Math Stat 14(4):378–388

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Punzo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 287 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagnato, L., De Capitani, L. & Punzo, A. Testing Serial Independence via Density-Based Measures of Divergence. Methodol Comput Appl Probab 16, 627–641 (2014). https://doi.org/10.1007/s11009-013-9320-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-013-9320-4

Keywords

AMS 2000 Subject Classifications

Navigation