Baumstark V, Last G (2009) Gamma distributions for stationary Poisson flat processes. Adv Appl Probab 41:911–939
Article
MATH
MathSciNet
Google Scholar
Bonnesen T, Fenchel W (1934) Theorie der konvexen Körper. Springer, Berlin
Book
MATH
Google Scholar
Hug D, Last G, Weil W (2003) Distance measurements on processes of flats. Adv Appl Probab 35:70–95
Article
MATH
MathSciNet
Google Scholar
Hug D, Schneider R, Schuster R (2008) Integral geometry of tensor valuations. Adv Appl Math 41:482–509
Article
MATH
MathSciNet
Google Scholar
Kallenberg O (2002) Foundations of modern probability. Springer, New York
Book
MATH
Google Scholar
Lachièze-Rey R, Peccati G (2012) Fine Gaussian fluctuations on the Poisson space I: contractions, cumulants and geometric random graphs. Electron J Probab, to appear
Lachièze-Rey R, Peccati G (2012) Fine Gaussian fluctuations on the Poisson space II: rescaled kernels, marked processes and geometric U-statistics. arXiv:1205.0632
Last G, Penrose MD (2011) Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab Theory Relat Fields 150:663–690
Article
MATH
MathSciNet
Google Scholar
Last G, Penrose MD, Schulte M, Thäle C (2012) Moments and central limit theorems for some multivariate Poisson functionals. arXiv:1205.3033
Materon G (1975) Random sets and integral geometry. Wiley, New York
Google Scholar
Mecke J (1991) On the intersection density of flat processes. Math Nachr 151:69–74
Article
MATH
MathSciNet
Google Scholar
Mecke J, Thomas C (1986) On an extreme value problem for flat processes. Commun StatStoch Models 2:273–280
Article
MATH
MathSciNet
Google Scholar
Peccati G (2011) The Chen-Stein method for Poisson functionals. arXiv:1112.5051
Peccati G, Taqqu MS (2008) Central limit theorems for double Poisson integrals. Bernoulli 14:791–821
Article
MATH
MathSciNet
Google Scholar
Peccati G, Solé JL, Taqqu MS, Utzet F (2010) Stein’s method and normal approximation of Poisson functionals. Ann Probab 38:443–478
Article
MATH
MathSciNet
Google Scholar
Reitzner M, Schulte M (2012) Central limit theorems for U-statistics of Poisson point processes. Ann Probab, to appear
Schneider R (1999) A duality for Poisson flats. Adv Appl Probab 31:63–68
Article
MATH
Google Scholar
Schneider R, Weil W (2008) Stochastic and integral geometry. Springer, Berlin
Book
MATH
Google Scholar
Schulte M (2012) Normal approximation of Poisson functionals in Kolmogorov distance. arXiv:1206.3967
Schulte M, Thäle C (2012) The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stoch Process Their Appl 122:4096–4120
Article
MATH
Google Scholar
Spodarev E (2001) On the rose of intersections of stationary flat processes. Adv Appl Probab 33:584–599
Article
MATH
MathSciNet
Google Scholar
Spodarev E (2003) Isoperimetric problems and roses of neighborhood for stationary flat processes. Math Nachr 251:88–100
Article
MATH
MathSciNet
Google Scholar
Weil W (1987) Point processes of cylinders, particles and flats. Acta Appl Math 9:103–136
Article
MATH
MathSciNet
Google Scholar