Skip to main content

Distances Between Poisson k -Flats

Abstract

The distances between flats of a Poisson k-flat process in the d-dimensional Euclidean space with k < d/2 are discussed. Continuing an approach originally due to Rolf Schneider, the number of pairs of flats having distance less than a given threshold and midpoint in a fixed compact and convex set is considered. For a family of increasing convex subsets, the asymptotic variance is computed and a central limit theorem with an explicit rate of convergence is proven. Moreover, the asymptotic distribution of the m-th smallest distance between two flats is investigated and it is shown that the ordered distances form asymptotically after suitable rescaling an inhomogeneous Poisson point process on the positive real half-axis. A similar result with a homogeneous limiting process is derived for distances around a fixed, strictly positive value. Our proofs rely on recent findings based on the Wiener–Itô chaos decomposition and the Malliavin–Stein method.

This is a preview of subscription content, access via your institution.

References

  • Baumstark V, Last G (2009) Gamma distributions for stationary Poisson flat processes. Adv Appl Probab 41:911–939

    Article  MATH  MathSciNet  Google Scholar 

  • Bonnesen T, Fenchel W (1934) Theorie der konvexen Körper. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hug D, Last G, Weil W (2003) Distance measurements on processes of flats. Adv Appl Probab 35:70–95

    Article  MATH  MathSciNet  Google Scholar 

  • Hug D, Schneider R, Schuster R (2008) Integral geometry of tensor valuations. Adv Appl Math 41:482–509

    Article  MATH  MathSciNet  Google Scholar 

  • Kallenberg O (2002) Foundations of modern probability. Springer, New York

    Book  MATH  Google Scholar 

  • Lachièze-Rey R, Peccati G (2012) Fine Gaussian fluctuations on the Poisson space I: contractions, cumulants and geometric random graphs. Electron J Probab, to appear

  • Lachièze-Rey R, Peccati G (2012) Fine Gaussian fluctuations on the Poisson space II: rescaled kernels, marked processes and geometric U-statistics. arXiv:1205.0632

  • Last G, Penrose MD (2011) Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab Theory Relat Fields 150:663–690

    Article  MATH  MathSciNet  Google Scholar 

  • Last G, Penrose MD, Schulte M, Thäle C (2012) Moments and central limit theorems for some multivariate Poisson functionals. arXiv:1205.3033

  • Materon G (1975) Random sets and integral geometry. Wiley, New York

    Google Scholar 

  • Mecke J (1991) On the intersection density of flat processes. Math Nachr 151:69–74

    Article  MATH  MathSciNet  Google Scholar 

  • Mecke J, Thomas C (1986) On an extreme value problem for flat processes. Commun StatStoch Models 2:273–280

    Article  MATH  MathSciNet  Google Scholar 

  • Peccati G (2011) The Chen-Stein method for Poisson functionals. arXiv:1112.5051

  • Peccati G, Taqqu MS (2008) Central limit theorems for double Poisson integrals. Bernoulli 14:791–821

    Article  MATH  MathSciNet  Google Scholar 

  • Peccati G, Solé JL, Taqqu MS, Utzet F (2010) Stein’s method and normal approximation of Poisson functionals. Ann Probab 38:443–478

    Article  MATH  MathSciNet  Google Scholar 

  • Reitzner M, Schulte M (2012) Central limit theorems for U-statistics of Poisson point processes. Ann Probab, to appear

  • Schneider R (1999) A duality for Poisson flats. Adv Appl Probab 31:63–68

    Article  MATH  Google Scholar 

  • Schneider R, Weil W (2008) Stochastic and integral geometry. Springer, Berlin

    Book  MATH  Google Scholar 

  • Schulte M (2012) Normal approximation of Poisson functionals in Kolmogorov distance. arXiv:1206.3967

  • Schulte M, Thäle C (2012) The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stoch Process Their Appl 122:4096–4120

    Article  MATH  Google Scholar 

  • Spodarev E (2001) On the rose of intersections of stationary flat processes. Adv Appl Probab 33:584–599

    Article  MATH  MathSciNet  Google Scholar 

  • Spodarev E (2003) Isoperimetric problems and roses of neighborhood for stationary flat processes. Math Nachr 251:88–100

    Article  MATH  MathSciNet  Google Scholar 

  • Weil W (1987) Point processes of cylinders, particles and flats. Acta Appl Math 9:103–136

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Thäle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulte, M., Thäle, C. Distances Between Poisson k -Flats . Methodol Comput Appl Probab 16, 311–329 (2014). https://doi.org/10.1007/s11009-012-9319-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-012-9319-2

Keywords

  • Central limit theorem
  • Chaos decomposition
  • Extreme values
  • Limit theorems
  • Poisson flat process
  • Poisson point process
  • Poisson U-statistic
  • Stochastic geometry
  • Wiener–Itô integral

AMS 2000 Subject Classification

  • 60D05
  • 60F05
  • 60G55
  • 60H07