Semi-Parametric Probability-Weighted Moments Estimation Revisited

  • Frederico Caeiro
  • M. Ivette Gomes
  • Björn Vandewalle
Article

Abstract

In this paper, for heavy-tailed models and through the use of probability weighted moments based on the largest observations, we deal essentially with the semi-parametric estimation of the Value-at-Risk at a level p, the size of the loss occurred with a small probability p, as well as the dual problem of estimation of the probability of exceedance of a high level x. These estimation procedures depend crucially on the estimation of the extreme value index, the primary parameter in Statistics of Extremes, also done on the basis of the same weighted moments. Under regular variation conditions on the right-tail of the underlying distribution function F, we prove the consistency and asymptotic normality of the estimators under consideration in this paper, through the usual link of their asymptotic behaviour to the one of the extreme value index estimator they are based on. The performance of these estimators, for finite samples, is illustrated through Monte-Carlo simulations. An adaptive choice of thresholds is put forward. Applications to a real data set in the field of insurance as well as to simulated data are also provided.

Keywords

Heavy tails Value-at-risk or high quantiles Probability of exceedance of a high level Semi-parametric estimation 

AMS 2000 Subject Classifications

Primary 62G32 62E20; Secondary 65C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araújo Santos P, Fraga Alves MI, Gomes (2006) Peaks over random threshold methodology for tail index and quantile estimation. Revstat 4(3):227–247MATHMathSciNetGoogle Scholar
  2. Balkema AA, de Haan L (1974) Residual life time at great age. Ann Probab 2:792–804CrossRefMATHGoogle Scholar
  3. Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes. Theory and applications. Wiley, New YorkCrossRefMATHGoogle Scholar
  4. Beirlant J, Figueiredo F, Gomes MI, Vandewalle B (2008) Improved reduced-bias tail index and quantile estimators. J Stat Plan Inference 138(6):1851–1870CrossRefMATHMathSciNetGoogle Scholar
  5. Beirlant J, Caeiro F, Gomes MI (2012) An overview and open research topics in the field of statistics of univariate extremes. Revstat 10(1):1–31MathSciNetGoogle Scholar
  6. Caeiro F, Gomes MI (2009) Semi-parametric second-order reduced-bias high quantile estimation. Test 18(2):392–413CrossRefMATHMathSciNetGoogle Scholar
  7. Caeiro F, Gomes MI (2011) Semi-parametric tail inference through probability-weighted moments. J Stat Plann Inference 41(2):937–950CrossRefMathSciNetGoogle Scholar
  8. Danielsson J, de Haan L, Peng L, de Vries CG (2001) Using a bootstrap method to choose the sample fraction in the tail index estimation. J Multivar Anal 76:226–248CrossRefMATHGoogle Scholar
  9. de Haan L, Ferreira A (2006) Extreme value theory: an introduction. Springer, New YorkGoogle Scholar
  10. de Haan L, Peng L (1998) Comparison of tail index estimators. Stat Neerl 52:60–70CrossRefMATHGoogle Scholar
  11. Dekkers A, de Haan L (1993) Optimal sample fraction in extreme value estimation. J Multivar Anal 47(2):173–195CrossRefMATHGoogle Scholar
  12. Diebolt J, Guillou A, Rached I (2007) Approximation of the distribution of excesses through a generalized probability-weighted moments method. J Stat Plann Inference 137:841–857CrossRefMATHMathSciNetGoogle Scholar
  13. Diebolt J, Guillou A, Naveau P, Ribereau P (2008) Improving probability-weighted moment methods for the generalized extreme value distribution. Revstat 6(1):33–50MATHMathSciNetGoogle Scholar
  14. Draisma G, de Haan L, Peng L, Pereira MT (1999) A bootstrap-based method to achieve optimality in estimating the extreme value index. Extremes 2(4):367–404CrossRefMATHMathSciNetGoogle Scholar
  15. Drees H (1998) On smooth statistical tail functions. Scand J Statist 25:187–210CrossRefMATHMathSciNetGoogle Scholar
  16. Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, BerlinCrossRefMATHGoogle Scholar
  17. Fraga Alves MI, Gomes MI, de Haan L (2003) A new class of semi-parametric estimators of the second order parameter. Port Math 60(2):194–213Google Scholar
  18. Geluk J, de Haan L (1987) Regular variation, extensions and tauberian theorems. Tech. Report CWI Tract 40, Centre for Mathematics and Computer Science, Amsterdam, NetherlandsGoogle Scholar
  19. Gnedenko BV (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math 44:423–453CrossRefMATHMathSciNetGoogle Scholar
  20. Gomes MI, Martins MJ (2002) “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5(1):5–31CrossRefMATHMathSciNetGoogle Scholar
  21. Gomes MI, Oliveira O (2001) The bootstrap methodology in statistics of extremes: choice of the optimal sample fraction. Extremes 4(4):331–358CrossRefMATHMathSciNetGoogle Scholar
  22. Gomes MI, Pestana D (2007) A sturdy reduced-bias extreme quantile (VaR) estimator. J Am Stat Assoc 102(477):280–292CrossRefMATHMathSciNetGoogle Scholar
  23. Gomes MI, Martins MJ, Neves MM (2000) Alternatives to a semi-parametric estimator of parameters of rare events—the jackknife methodology. Extremes 3(3):207–229CrossRefMATHMathSciNetGoogle Scholar
  24. Gomes MI, Canto e Castro L, Fraga Alves MI, Pestana DD (2008) Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: laurens de haan leading contributions. Extremes 11(1):3–34CrossRefMATHMathSciNetGoogle Scholar
  25. Gomes MI, Mendonça S, Pestana D (2009) Adaptive reduced-bias tail index and value-at-risk estimation. In: Sakalauskas L, Skiadas C, Zavadskas EK (eds) Applied stochastic models and data analysis ASMDA 2009. IMI & VGTU Editions, pp 41–44Google Scholar
  26. Gomes MI, Mendonça S, Pestana D (2011) Adaptive reduced-bias tail index and var estimation via the bootstrap methodology. Commun Stat Theory Methods 40(16):2946–2968CrossRefMATHGoogle Scholar
  27. Gomes MI, Figueiredo F, Neves MM (2012) Adaptive estimation of heavy right tails: the bootstrap methodology in action. Extremes. doi:10.1007/s10687-011-0146-6 MathSciNetGoogle Scholar
  28. Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res 15:1049–1054CrossRefGoogle Scholar
  29. Hall P (1990) Using the bootstrap to estimate mean-square error and selecting smoothing parameter in non-parametric problems. J Multivar Anal 32:177–203CrossRefMATHGoogle Scholar
  30. Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174CrossRefMATHGoogle Scholar
  31. Hosking J, Wallis J (1987) Parameter and quantile estimation for the generalized pareto distribution. Technometrics 29(3):339–349CrossRefMATHMathSciNetGoogle Scholar
  32. Hosking J, Wallis J, Wood E (1985) Estimation of the generalized extreme value distribution by the method of probability-weighted moments. Technometrics 27(3):251–261CrossRefMathSciNetGoogle Scholar
  33. Pickands III J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131MATHMathSciNetGoogle Scholar
  34. Reiss RD, Thomas M (2007) Statistical analysis of extreme values, with application to insurance, finance, hydrology and other fields, 3rd edn. Birkhäuser VerlagGoogle Scholar
  35. Vandewalle B, Beirlant J (2006) On univariate extreme value statistics and the estimation of reinsurance premiums. Insurance Math Econom 38(3):444–459CrossRefMathSciNetGoogle Scholar
  36. Weissman I (1978) Estimation of parameters of large quantiles based on the k largest observations. J Am Stat Assoc 73:812–815MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Frederico Caeiro
    • 1
  • M. Ivette Gomes
    • 2
  • Björn Vandewalle
    • 3
  1. 1.FCT and CMAUniversidade Nova de LisboaLisbonPortugal
  2. 2.DEIO - CEAUL and FCULUniversidade de LisboaLisbonPortugal
  3. 3.ISEGI and CEAULUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations