Skip to main content
Log in

Anisotropic Poisson Processes of Cylinders

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambartzumian RV (1990) Factorization calculus and geometric probability, encyclopedia of mathematics and its applications, vol 33. Cambridge University Press, Cambridge

    Google Scholar 

  • Berryman JG (1987) Relationship between specific surface area and spatial correlation functions for anisotropic porous media. J Math Phys 28:244–245

    Article  MathSciNet  MATH  Google Scholar 

  • Corte H, Kallmes O (1962) Formation and structure of paper: statistical geometry of a fiber network. In: Transactions 2nd fundamental research symposium 1961. Oxford, pp 13–46

  • Davy P (1978) Stereology—a statistical viewpoint. PhD thesis, Australian National University, Canberra

  • Helfen L, Baumbach T, Schladitz K, Ohser J (2003) Determination of structural properties of light materials by three–dimensional synchrotron–radiation imaging and image analysis. G I T Imaging Microsc 4:55–57

    Google Scholar 

  • Hoffmann LM (2009) Mixed measures of convex cylinders and quermass densities of Boolean models. Acta Appl Math 105(2):141–156

    Article  MathSciNet  MATH  Google Scholar 

  • König D, Schmidt V (1991) Zufällige Punktprozesse. Teubner, Stuttgart

    Google Scholar 

  • Manke I, Hartnig C, Grünerbel M, Lehnert W, Kardjilov N, Haibel A, Hilger A, Banhart J (2007) Investigation of water evolution and transport in fuel cells with high resolution synchrotron X-ray radiography. Appl Phys Lett 90:174,105

    Google Scholar 

  • Matheron G (1975) Random sets and integral geometry. Wiley, New York

    MATH  Google Scholar 

  • Mathias M, Roth J, Fleming J, Lehnert W (2003) Diffusion media materials and characterisation. Handbook of Fuel Cells III

  • Molchanov IS, Stoyan D, Fyodorov KM (1993) Directional analysis of planar fibre networks: application to cardboard microstructure. J Microsc 172:257–261

    Article  Google Scholar 

  • Mukherjee PP, Wang CY (2006) Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. J Electrochem Soc 153(5):A840–A849

    Article  Google Scholar 

  • Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester

    MATH  Google Scholar 

  • Schladitz K, Peters S, Reinel-Bitzer D, Wiegmann A, Ohser J (2006) Design of acoustic trim based on geometric modelling and flow simulation for non-woven. Comput Mater Sci 38(1):56–66

    Article  Google Scholar 

  • Schneider R (1987) Geometric inequalities for Poisson processes of convex bodies and cylinders. Results Math 11:165–185

    MathSciNet  MATH  Google Scholar 

  • Schneider R (1993) Convex bodies. The Brunn–Minkowski theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Schneider R, Weil W (2008) Stochastic and integral geometry. Probability and its applications. Springer

  • Serra J (1982) Image Analysis and Mathematical Morphology. Academic Press, London

    MATH  Google Scholar 

  • Spodarev E (2002) Cauchy–Kubota-type integral formulae for the generalized cosine transforms. Izv Akad Nauk Armen, Mat [J Contemp Math Anal, Armen Acad Sci] 37(1):47–64

    MathSciNet  Google Scholar 

  • Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  • Weil W (1987) Point processes of cylinders, particles and flats. Acta Appl Math 9:103–136

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Spiess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiess, M., Spodarev, E. Anisotropic Poisson Processes of Cylinders. Methodol Comput Appl Probab 13, 801–819 (2011). https://doi.org/10.1007/s11009-010-9193-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-010-9193-8

Keywords

AMS 2000 Subject Classifications

Navigation