Skip to main content
Log in

\(\boldsymbol{\mathcal{G}-}\)Inhomogeneous Markov Systems of High Order

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In the present, we introduce and study the \(\mathcal{G-}\)inhomogeneous Markov system of high order, which is a more general in many respects stochastic process than the known inhomogeneous Markov system. We define the inhomogeneous superficial razor cut mixture transition distribution model extending for the homogeneous case the idea of the mixture transition model. With the introduction of the appropriate vector stochastic process and the establishment of relationships among them, we study the asymptotic behaviour of the \(\mathcal{G-}\)inhomogeneous Markov system of high order. In the form of two theorems, the asymptotic behaviour of the inherent \(\mathcal{G-}\)inhomogeneous Markov chain and the expected and relative expected population structure of the \(\mathcal{G-}\)inhomogeneous Markov system of high order, are provided under assumptions easily met in practice. Finally, we provide an illustration of the present results in a manpower system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adke SR, Deshmukh SR (1988) Limit distribution of high order Markov chain. J R Stat Soc B (1):105–108

  • Anderson TWW, Goodman LA (1957) Statistical inference about Markov chains. Ann Math Stat 28:89–110

    Article  MATH  MathSciNet  Google Scholar 

  • Barbu V, Boussemart M, Limnios N (2004) Discrete-time semi Markov model for reliability and survival analysis. Commun Stat Theory Methods 33:2833–2868

    Article  MATH  MathSciNet  Google Scholar 

  • Bartholomew DG (1963) A multistage renewal process. J R Stat Soc B 25:150–168

    MATH  MathSciNet  Google Scholar 

  • Bartholomew DG (1982) Stochastic models for social processes, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Bertchtold A (1998) Chaines de Markov et modeles de transition: applications aux sciences sociales. HERMES, Paris

    Google Scholar 

  • Bertchtold A (2001) Estimation in the mixture transition distribution model. J Time Ser Anal 22:379–397

    Article  MathSciNet  Google Scholar 

  • Bertchtold A, Raftery AE (2002) The mixture transition distribution model fo high-order Markov chains and non-Gaussian time series. Stat Sci 17(3):328–356

    Article  Google Scholar 

  • Bielecki TR, Rutkowski M (2004) Credit risk: modeling, valuation and hedging. Springer, New York

    Google Scholar 

  • Bollerslev T, Chou RY, Kroner KF (1992) ARCH modeling in finance: a review of the theory and empirical evidence. J Econom 52:5–59

    Article  MATH  Google Scholar 

  • Craig P (1989) Time series analysis of directional data. Ph.D. thesis, Dept. Statistics, Trinity College, Dublin

  • Crooks GE (2000) Path ensemble averages in system driven far from equilibrium. Phys Rev E 61(3):2361–2366

    Article  Google Scholar 

  • De Freyter T (2006) Modelling heterogeneity in manpower planning: dividing the personel system into more homogeneous subgroups. Appl Stoch Model Bus 22(4):321–334

    Article  Google Scholar 

  • Foucher Y, Mathew E, Saint Pierre P, Durand J-F, Daures JP (2005) A semi-Markov model based on generalized Weibull distribution with an illustration for HIV disease. Biom J 47(6):1–9

    Article  Google Scholar 

  • Gantmacher FR (1959) Applications of the theory of matrices. Interscience, New York

    MATH  Google Scholar 

  • Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Horn RA, Johnson CR (1990) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Huang CC, Isaacson D, Vinograde B (1976) The rate of convergence of certain nonhomogeneous Markov chains. Z Wahrscheinlichkeitstheor Verw Geb 35(2):141–146

    Article  MATH  MathSciNet  Google Scholar 

  • Iosifescu M (1980) Finite Markov processes and their applications. Wiley, New York

    MATH  Google Scholar 

  • Isaakson DL, Madsen RW (1985) Markov chains. Theory and applications. Krieger, Malabar

    Google Scholar 

  • Limnios N, Oprisan G (2003) An introduction to semi-Markov processes with application to reliability. In: Shanbhag DN, Rao CR (eds) Handbook of statistics, vol 21. Elsevier, Amsterdam, pp 515–556

    Google Scholar 

  • Mathew E, Foucher Y, Dellamonica P, Daures, J-P (2006) Parametric and non-homogeneous semi-Markov process for HIV control. Working paper. Archet Hospital, Nice

  • McClean SI, Gribbin JO (1987) Estimation for incomplete manpower data. Appl Stoch Models Data Anal 3:13–25

    Article  MATH  Google Scholar 

  • McClean SI, Gribbin JO (1991) A non parametric competing risks model for manpower planning. Appl Stoch Models Data Anal 7:327–341

    Article  Google Scholar 

  • McClean SI, Scotney B, Robinson S (2003) Conceptual clustering of heterogeneous gene expression sequences. Artif Intell Rev 20:53–73

    Article  Google Scholar 

  • MacDonald IL, Zucchini W (1997) Hidden Markov and other models for discrete-valued time series. Chapman and Hall, London

    MATH  Google Scholar 

  • Nilakantan K, Raghavendra BG (2005) Control aspects in proportionality Markov manpower systems. Appl Math Model 29(1):85–116

    Article  MATH  Google Scholar 

  • Ocana-Riola R (2005) Non-homogeneous Markov processes for biomedical data analysis. Biom J 47(3):369–376

    Article  MathSciNet  Google Scholar 

  • Pegram GGS (1980) An autoregressive model for multilag Mrarkov chains. J Appl Probab 17:350–362

    Article  MATH  MathSciNet  Google Scholar 

  • Patoucheas PD, Stamou G (1993) Non homogeneous Markovian models in ecological modelling: a study of the zoobenthos dynamics in Thermaikos Gulf, Greece. Ecol Model 66:197–215

    Article  Google Scholar 

  • Perez-Ocon R, Castro JER (2004) A semi-Markov model in biomedical studies. Commun Stat Theory Methods 33(3):437–455

    Article  MATH  Google Scholar 

  • Raftery AE (1985) A model for high-order Markov chains. J R Stat Soc B 47:528–539

    MATH  MathSciNet  Google Scholar 

  • Raftery AE, Tavare S (1994) Estimation and modelling repeated patterns in high order Markov chains with the mixture transition distribution model. Appl Stat Sci 1:403–423

    MATH  Google Scholar 

  • Seneta E (1981) Non negative matrices and Markov chains. Springer, New York

    MATH  Google Scholar 

  • Sen Gupta A, Ugwuowo FI (2006) Modelling multi-stage processes through multivariate distributions. J Appl Stat 33(2):175–187

    Article  MathSciNet  Google Scholar 

  • Saint Pierre P (2005) Modelles multi-etats de type Markovien et application a l asthme. Ph.D. thesis, Universite Montpellier I

  • Tweedie RL (1981) Operator geometric stationary distributions for Markov chains with applications to queuing models. Adv Appl Probab 14:368–391

    Article  MathSciNet  Google Scholar 

  • Vasileiou A, Vassiliou P-CG (2006) An inhomogeneous Semi-Markov model for the term structure of credit risk spreads. Adv Appl Probab 38:171–198

    Article  MATH  MathSciNet  Google Scholar 

  • Vassiliou P-CG (1976) A Markov chain model for watage in manpower systems. Oper Res Q 27:57–70

    Article  Google Scholar 

  • Vassiliou P-CG (1978) A high order non-linear Markovian model for promotion in manpower systems. J R Stat Soc A 137:584–595

    Google Scholar 

  • Vassiliou P-CG (1981) On the limiting behaviour of a nonhomogeneous Markov system. Biometrika 68(2):557–564

    MATH  MathSciNet  Google Scholar 

  • Vassiliou P-CG (1982) Asymptotic behavior of Markov systems. J Appl Probab 19:815–857

    Article  MathSciNet  Google Scholar 

  • Vassiliou P-CG (1997) The evolution of the theory of non-homogeneous Markov systems. Appl Stoch Models Data Anal 13(3–4):159–176

    Article  MATH  MathSciNet  Google Scholar 

  • Vassiliou P-CG, Papadopoulou AA (1992) Nonhomogeneous semi-Markov systems and maintainability of the state sizes. J Appl Probab 29(3):519–534

    Article  MATH  MathSciNet  Google Scholar 

  • Vassiliou P-CG, Tsaklidis G (1989) The rate of convergence of the vector of variances and covariances in non-homogeneous Markov systems. J Appl Probab 27:776–783

    Article  MathSciNet  Google Scholar 

  • Ugwuowo FI, McClean SI (2000) Modelling heterogeneity in a manpower system: a review. Appl Stoch Models Bus Ind 2:99–110

    Article  MathSciNet  Google Scholar 

  • Yadavalli VSS, Natarajan R, Udayabhaskaran S (2002) Optimal training policy for promotion - stochastic models of manpower systems. Electron Publ 13(1):13–23

    Google Scholar 

  • Young A, Almond G (1961) Predicting distributions of staff. Comput J 3:246–250

    Article  Google Scholar 

  • Young A, Vassiliou P-CG (1974) A non-linear model on the promotion of staff. J R Stat Soc A 137:584–595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-C. G. Vassiliou.

Additional information

T. P. Moysiadis was supported by a research assistanship I.K.Y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassiliou, PC.G., Moysiadis, T.P. \(\boldsymbol{\mathcal{G}-}\)Inhomogeneous Markov Systems of High Order. Methodol Comput Appl Probab 12, 271–292 (2010). https://doi.org/10.1007/s11009-009-9143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-009-9143-5

Keywords

AMS 2000 Subject Classification

Navigation