H. Albrecher, S. Asmussen, and D. Kortschak, “Tail asymptotics for the sum of two heavy-tailed dependent risks,” Extremes vol. 9(2) pp. 107–130, 2006.
MATH
Article
MathSciNet
Google Scholar
S. Alink, M. Löwe, and M. V. Wüthrich, “Diversification of aggregate dependent risks,” Insurance. Mathematics & Economics vol. 35(1) pp. 77–95, 2004.
MATH
Article
MathSciNet
Google Scholar
S. Alink, M. Löwe, and M. V. Wüthrich, “Analysis of the expected shortfall of aggregate dependent risks,” Astin Bulletin vol. 35(1) pp. 25–43, 2005a
MATH
Article
MathSciNet
Google Scholar
S. Alink, M. Löwe, and M. V. Wüthrich, “Analysis of the diversification effect of aggregate dependent risks,” Statistica Neerlandica, 2005b (preprint).
S. Asmussen, and L. Rojas-Nandayapa, Sums of Dependent Lognormal Random Variables: Asymptotics and Simulation, Technical report. Thiele Center, 2006.
P. Barbe, A.-L. Fougéres, and C. Genest, “On the tail behavior of sums of dependent risks,” Astin Bulletin vol. 36(2) pp. 361–373, 2006.
Article
MathSciNet
Google Scholar
B. Basrak, The Sample Autocorrelation Function of Non-linear Time Series, Dissertation. University of Groningen, 2000.
B. Basrak, R. A. Davis, and T. Mikosch, “A characterization of multivariate regular variation,” Annals of Applied Probabability vol. 12(3) pp. 908–920, 2002.
MATH
Article
MathSciNet
Google Scholar
N. Bäuerle, and A. Müller, “Modeling and comparing dependencies in multivariate risk portfolios,” ASTIN Bulletin vol. 28(1) pp. 59–76, 1998.
MATH
Article
Google Scholar
J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of Extremes. Wiley: Chichester, 2004.
MATH
Book
Google Scholar
S. Demarta, and A. J. McNeil, “The t copula and related copulas,” Internatational Statististical Review vol. 73(1) pp. 111–129, 2005.
MATH
Google Scholar
P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events, Springer: Berlin, 1997.
MATH
Google Scholar
E. W. Frees, and E. A. Valdez, “Understanding relationships using copulas,” North American Actuarial Journal vol. 2(1) pp. 1–25, 1998.
MATH
MathSciNet
Google Scholar
J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Robert E. Krieger Publishing Co. Inc.: Melbourne, FL, 1987.
MATH
Google Scholar
J. L. Geluk, and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, vol. 40 of CWI Tract. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1987.
H. Hult, and F. Lindskog, “Multivariate extremes, aggregation and dependence in elliptical distributions,” Advances in Applied Probability vol. 34(3) pp. 587–608, 2002.
MATH
Article
MathSciNet
Google Scholar
H. Hult, and F. Lindskog, “On Kesten’s counterexample to the Cramér–Wold device for regular variation,” Bernoulli vol. 12(1) pp. 133–142, 2006.
MATH
MathSciNet
Google Scholar
H. Joe, Multivariate Models and Dependence Concepts, Chapman & Hall: London, 1997.
MATH
Google Scholar
O. Kallenberg, Random Measures. Akademie-Verlag: Berlin, 1983.
MATH
Google Scholar
S. A. Klugman, and R. Parsa, “Fitting bivariate loss distributions with copulas,” Insurance. Mathematics Economics vol. 24(1–2) pp. 139–148, 1999.
MATH
Article
MathSciNet
Google Scholar
C. Klüppelberg, and T. Mikosch, “Large deviations of heavy-tailed random sums with applications in insurance and finance,” J. Appl. Probab. vol. 34(2) pp. 293–308, 1997.
MATH
Article
MathSciNet
Google Scholar
Y. Malevergne, and D. Sornette, Extreme Financial Risks—from Dependence to Risk Management, Springer: Berlin, 2006.
MATH
Google Scholar
A. W. Marshall, and I. Olkin, “Domains of attraction of multivariate extreme value distributions,” Annals of Probability vol. 11(1) pp. 168–177, 1983.
MATH
Article
MathSciNet
Google Scholar
R. B. Nelsen, An Introduction to Copulas, Springer: New York, 1999.
MATH
Google Scholar
S. I. Resnick, Extreme Values, egular Variation, and Point Processes, Springer: New York, 1987.
Google Scholar