Methodology and Computing in Applied Probability

, Volume 9, Issue 3, pp 389–397 | Cite as

Parametric and Non Homogeneous Semi-Markov Process for HIV Control

  • E. MathieuEmail author
  • Y. Foucher
  • P. Dellamonica
  • J. P. Daures


In AIDS control, physicians have a growing need to use pragmatically useful and interpretable tools in their daily medical taking care of patients. Semi-Markov process seems to be well adapted to model the evolution of HIV-1 infected patients. In this study, we introduce and define a non homogeneous semi-Markov (NHSM) model in continuous time. Then the problem of finding the equations that describe the biological evolution of patient is studied and the interval transition probabilities are computed. A parametric approach is used and the maximum likelihood estimators of the process are given. A Monte Carlo algorithm is presented for realizing non homogeneous semi-Markov trajectories. As results, interval transition probabilities are computed for distinct times and follow-up has an impact on the evolution of patients.


Non homogeneous semi-Markov process Maximum likelihood estimation Monte Carlo Markov chain algorithm Interval transition probabilities 

AMS 2000 Subject Classification

60K15 62M09 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. R. Cox and V. Isham, Point Processes, Chapman and Hall: London, UK, 1980.zbMATHGoogle Scholar
  2. O. Davidov, “The steady-state probabilities for regenerative semi-Markov processes with application to prevention and screening,” Applied Stochastic Models and Data Analysis vol. 15 pp. 55–63, 1999.zbMATHCrossRefGoogle Scholar
  3. O. Davidov and M. Zelen, “Designing cancer prevention trials : a stochastic model approach,” Statistics in Medicine vol. 19 pp. 1983–1995, 2000.CrossRefGoogle Scholar
  4. R. C. Gentleman, J. F. Lawless, J. C. Lindsey, and P. Yan, “Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease,” Statistics in Medicine vol. 13 pp. 805–821, 1994.CrossRefGoogle Scholar
  5. J. C. Hendriks, G. A. Satten, I. M. Longini, H. A. M. Van Druten, P. T. A. Schellekens, R. A. Coutinho, and G. J. P. Van Griensven, “Use of immunological markers and continuous-time Markov models to estimate progression of HIV infection in homosexual men,” AIDS vol. 10 pp. 649–656, 1996.CrossRefGoogle Scholar
  6. J. Janssen, Semi Markov Models. Theory and Applications, Plenum: New York, 1986.Google Scholar
  7. J. Janssen and N. Limnios, Semi-Markov Models and Applications, Kluwer: Boston, MA, 1999.zbMATHGoogle Scholar
  8. J. Janssen and R. Manca, “Numerical solution of non-homogeneous semi-Markov processes in transient case,” Methodology and Computing in Applied Probability vol. 3 pp. 271–293, 2001.zbMATHCrossRefGoogle Scholar
  9. P. Joly and D. Commenges, “A penalized likelihood approach for a progressive three-state model with censored and truncated data: application to AIDS,” Biometrics vol. 55 pp. 887–890, 1999.zbMATHCrossRefGoogle Scholar
  10. I. Kousignian, B. Autran, C. Chouquet, V. Calvez, E. Gomard, C. Katlama, and Y. Rivière, “Markov modelling of changes in HIV-specific cytoxic T-lymphocyte response with time in untreated HIV-1 infected patients,” Statistics in Medicine vol. 22 pp. 1675-1690, 2003.CrossRefGoogle Scholar
  11. I. M. Longini, W. S. Clark, L. I. Gardner, and J. F. Brundage, “The dynamics of CD4+ counts in HIV-infected individuals: a Markov modeling approach,” Journal of Acquired Immune Deficiency Syndromes vol. 4 pp. 1141–1147, 1991.Google Scholar
  12. S. McClean, E. Montgomery, and F. Ugwuowo, “Non-homogeneous continuous-time Markov and semi-Markov manpower models,” Applied Stochastic Models and Data Analysis vol. 13 pp. 191–198, 1998.CrossRefGoogle Scholar
  13. A. A. Papadopoulou and P. C. G. Vassiliou, “Continuous time non homogeneous semi-Markov systems,” In J. Janssen and N. Limnios (eds.), Semi-Markov Models and Applications, pp. 241-251, 1999.Google Scholar
  14. A. A. Papadopoulou, “Counting transitions-entrance probabilities in non-homogeneous semi-Markov systems,” Applied Stochastic Models and Data Analysis vol. 13 pp. 199–206, 1998.CrossRefGoogle Scholar
  15. G. A. Satten and M. R. Sternberg, “Fitting semi-Markov models to interval-censored data with unknown initiation times,” Biometrics vol. 55 pp. 507–513, 1999.zbMATHCrossRefGoogle Scholar
  16. V. Sypsa, G. Touloumi, and M. Kenward, “Comparison of smoothing techniques for CD4 data in a Markov model with states defined by CD4: an example on the estimation of the HIV incubation time distribution,” Statistics in Medicine vol. 20 pp. 3667–3676, 2001.CrossRefGoogle Scholar
  17. W. Y. Tan, Stochastic Modeling of AIDS Epidemiology and HIV Pathogenesis, World Scientific: Singapore, 2000.zbMATHGoogle Scholar
  18. P. C. G. Vassiliou and A. A. Papadopoulou, “Non-homogeneous semi-Markov systems and maintainability of the state sizes,” Journal of Applied Probability vol. 29 pp. 519–534, 1992.zbMATHCrossRefGoogle Scholar
  19. W. Wadjda, “Uniformly strong ergodicity for non-homogeneous semi-Markov processes,” Demonstration Mathematica vol. 25 pp. 755–764, 1992.Google Scholar
  20. S. R. Wilson and P. J. Solomon, “Estimates for different stages of HIV/AIDS disease,” Computer Applications in the Biosciences vol. 10 pp. 681–683, 1994.Google Scholar
  21. C. L. Yau and A. V. Huzurbazar, “Analysis of censored and incomplete survival data using flowgraph models,” Statistics in Medicine vol. 21 pp. 3727–3743, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • E. Mathieu
    • 1
    Email author
  • Y. Foucher
    • 1
  • P. Dellamonica
    • 2
  • J. P. Daures
    • 1
  1. 1.Biostatistics LaboratoryClinical Research University InstituteMontpellierFrance
  2. 2.Infectious Disease DepartmentArchet HospitalNiceFrance

Personalised recommendations