Skip to main content
Log in

Physicochemical Basis of RecA Filamentation on Single-Stranded DNA

  • Molecular Mechanisms of Biological Processes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Quantitative analysis was performed for the first time for the interaction of Escherichia coli RecA, which plays the central role in homologous recombination, and ssDNA varying in length and structure. DNA recognition was shown to depend on weak additive interactions between RecA monomers of the filament and various structural elements of DNA. Orthophosphate and dNMPs acted as minimal inhibitors of RecA filamentation on d(pN)20. A stepwise increase in homooligonucleotide length by one nucleotide (from 2 to 20 nt) monotonically increased the affinity approximately twofold (factor f) due to weak additive contacts of RecA with each internucleoside phosphate (f ≈ 1.56) and specific interactions with T and C (f ≈ 1.32). In the case of d(pA) n , the RecA filament showed virtually no interaction with bases and interacted more efficiently with internucleoside phosphates of the first than of the next helix turn (n < 10, f ≈ 2.1 vs. n > 10, f ≈ 1.3). The affinity of RecA for d(pN) n and various modified bases proved to depend on the base, the DNA structure, and the conformation of the sugar-phosphate backbone. The affinity considerably increased with bases containing exocyclic proton-accepting groups. Possible causes of the preferential binding of RecA with DNAs of a particular length and composition are considered. Mechanisms are proposed for ssDNA recognition by RecA and for homologous strand exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lusetti S.L., Cox M.M. 2002. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100.

    Article  PubMed  CAS  Google Scholar 

  2. Amaratunga M., Benight A.S. 1988. DNA sequence dependence of ATP hydrolysis by RecA protein. Biochem. Biophys. Res. Commun. 157, 127–133.

    Article  PubMed  CAS  Google Scholar 

  3. Cazenave C., Chabbert M, Toulme J.J., Helene C. 1984. Absorption and fluorescence studies of the binding of the recA gene product from E. coli to single-stranded and double-stranded DNA. Ionic strength dependence. Biochim. Biophys. Acta. 781, 7–13.

    PubMed  CAS  Google Scholar 

  4. McEntee K., Weinstock G.M., Lehman I.R. 1981. Binding of the RecA protein of Escherichia coli to single-and double-stranded DNA. J. Biol. Chem. 256, 8835–8844.

    PubMed  CAS  Google Scholar 

  5. Tracy R.B., Kowalczykowski S.C. 1996. In vitro selection of preferred DNA pairing sequences by the Escherichia coli RecA protein. Genes Dev. 10, 1890–1903.

    PubMed  CAS  Google Scholar 

  6. Yu X., Egelman E.H. 1992. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J. Mol. Biol. 227, 334–346.

    Article  PubMed  CAS  Google Scholar 

  7. Register J.C., 3rd, Griffith J. 1985. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J. Biol. Chem. 260, 12308–12312.

    PubMed  CAS  Google Scholar 

  8. Bork J.M., Cox M.M., Inman R.B. 2001. RecA protein filaments disassemble in the 5′ to 3′ direction on single-stranded DNA. J. Biol. Chem. 276, 45740–45743.

    Article  PubMed  CAS  Google Scholar 

  9. Stasiak A., Di Capua E. 1982. The helicity of DNA in complexes with RecA protein. Nature. 299, 185–186.

    Article  PubMed  CAS  Google Scholar 

  10. Pugh B.F., Schutte B.C., Cox M.M. 1989. Extent of duplex DNA underwinding induced by RecA protein binding in the presence of ATP. J. Mol. Biol. 205, 487–492.

    Article  PubMed  CAS  Google Scholar 

  11. Heuser J., Griffith J. 1989. Visualization of RecA protein and its complexes with DNA by quick-freeze/deep-etch electron microscopy. J. Mol. Biol. 210, 473–484.

    Article  PubMed  CAS  Google Scholar 

  12. Mazin A.V., Kowalczykowski S.C. 1998. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. EMBO J. 17, 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  13. Zhurkin V.B., Raghunathan G., Ulyanov N.B., Camerini-Otero R.D., Jernigan R.L. 1994. A parallel DNA triplex as a model for the intermediate in homologous recombination. J. Mol. Biol. 239, 181–200.

    Article  PubMed  CAS  Google Scholar 

  14. Kim M.G., Zhurkin V.B., Jernigan R.L., Camerini-Otero R.D. 1995. Probing the structure of a putative intermediate in homologous recombination: The third strand in the parallel DNA triplex is in contact with the major groove of the duplex. J. Mol. Biol. 247, 874–889.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou X., Adzuma K. 1997. DNA strand exchange mediated by the Escherichia coli RecA protein initiates in the minor groove of double-stranded DNA. Biochemistry. 36, 4650–4661.

    PubMed  CAS  Google Scholar 

  16. Howard-Flanders P., West S.C., Stasiak A. 1984. Role of RecA protein spiral filaments in genetic recombination. Nature. 309, 215–219.

    Article  PubMed  CAS  Google Scholar 

  17. Roca A.I., Cox M.M. 1997. RecA protein: Structure, function, and role in recombinational DNA repair. Prog. Nucleic Acids Res. Mol. Biol. 56, 129–223.

    CAS  Google Scholar 

  18. Folta-Stogniew E., O'Malley S., Gupta R., Anderson K.S., Radding C.M. 2004. Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol. Cell. 15, 965–975.

    Article  PubMed  CAS  Google Scholar 

  19. Malkov V.A., Camerini-Otero R.D. 1995. Photo-crosslinks between single-stranded DNA and Escherichia coli RecA protein map to loops L1 (amino acid residues 157–164) and L2 (amino acid residues 195–209). J. Biol. Chem. 270, 30230–30233.

    PubMed  CAS  Google Scholar 

  20. Morimatsu K., Horii T., Takahashi M. 1995. Interaction of Tyr103 and Tyr264 of the RecA protein with DNA and nucleotide cofactors. Fluorescence study of engineered proteins. Eur. J. Biochem. 228, 779–785.

    PubMed  CAS  Google Scholar 

  21. Morimatsu K., Horii T. 1995. Analysis of the DNA binding site of Escherichia coli RecA protein. Adv. Biophys. 31, 23–48.

    PubMed  CAS  Google Scholar 

  22. Morimatsu K., Funakoshi T., Horii T., Takahashi M. 2001. Interaction of tyrosine 65 of RecA protein with the first and second DNA strands. J. Mol. Biol. 306, 189–199.

    Article  PubMed  CAS  Google Scholar 

  23. Rehrauer W.M., Kowalczykowski S.C. 1996. The DNA binding site(s) of the Escherichia coli RecA protein. J. Biol. Chem. 271, 11996–12002.

    Article  PubMed  CAS  Google Scholar 

  24. Bugreev D.V., Nevinsky G.A. 1999. Potential of the method of stepwise increase in ligand complexity in studies of protein-nucleic acid interactions: Mechanisms of the functioning of some replication, repair, topoisomerization, and restriction enzymes. Biokhimiya. 64, 237–249.

    CAS  Google Scholar 

  25. Nevinsky G.A. 2004. The role of weak specific and nonspecific interactions in enzymatic recognition and conversion of long DNAs. Mol. Biol. 38, 636–662.

    Article  CAS  Google Scholar 

  26. Nevinsky G.A. 2003. Structural, thermodynamic, and kinetic basis of DNA-and RNA-dependent enzymes functioning. Important role of weak nonspecific additive interactions between enzymes and long nucleic acids for their recognition and transformation. In: Protein Structures. Kaleidoscope of Structural Properties and Functions. Ed. Uversky V.N. Fort P.O.: Research Signpost, 133–222.

    Google Scholar 

  27. Nevinsky G.A. 1995. The essential role of weak interactions in enzyme recognition of long DNA and RNA molecules. Mol. Biol. 29, 16–37.

    CAS  Google Scholar 

  28. Vinogradova N.L., Bulychev N.V., Maksakova G.A., Johnson F., Nevinsky G.A. 1998. Uracil-DNA glycosylase: Interpretation of X-ray data in the light of kinetic and thermodynamic studies. Mol. Biol. 32, 498–508.

    Google Scholar 

  29. Ishchenko A.A., Vasilenko N.L., Sinitsina O.I., Yamkovoi V.I., Fedorova O.S., Douglas K.T., Nevinsky G.A. 2002. Thermodynamic, kinetic, and structural basis for recognition and repair of 8-oxoguanine in DNA by Fpg protein from Escherichia coli. Biochemistry. 41, 7540–7548.

    Article  PubMed  CAS  Google Scholar 

  30. Fedorova O.S., Nevinsky G.A., Koval V.V., Ishchenko A.A., Vasilenko N.L., Douglas K.T. 2002. Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates. Biochemistry. 41, 1520–1528.

    Article  PubMed  CAS  Google Scholar 

  31. Beloglazova N.G., Kirpota O.O., Starostin K.V., Ishchenko A.A., Yamkovoy V.I., Zharkov D.O., Douglas K.T., Nevinsky G.A. 2004. Thermodynamic, kinetic and structural basis for recognition and repair of abasic sites in DNA by apurinic/apyrimidinic endonuclease from human placenta. Nucleic Acids Res. 32, 5134–5146.

    PubMed  CAS  Google Scholar 

  32. Kolocheva T.I., Maksakova G.A., Bugreev D.V., Nevinsky G.A. 2001. Interaction of endonuclease EcoRI with short specific and nonspecific oligonucleotides. IUBMB Life. 51, 189–195.

    Article  PubMed  CAS  Google Scholar 

  33. Bugreev D.V., Baranova S., Zakharova O.D., Parissi V., Desjobert C., Sottofattori E., Balbi A., Litvak S., Tarrago-Litvak L., Nevinsky G.A. 2003. Dynamic, thermodynamic, and kinetic basis for recognition and transformation of DNA by human immunodeficiency virus type 1 integrase. Biochemistry. 42, 9235–9247.

    Article  PubMed  CAS  Google Scholar 

  34. Bugreev D.V., Sinitsina O.I., Buneva V.N., Nevinsky G.A. 2003. Mechanism of supercoiled DNA recognition by eukaryotic topoisomerases I: 1. Interaction of enzymes with nonspecific oligonucleotides. Bioorg. Khim. 29, 163–174.

    PubMed  CAS  Google Scholar 

  35. Bugreev D.V., Buneva V.N., Sinitsina O.I., Nevinsky G.A. 2003. Mechanism of supercoiled DNA recognition by eukaryotic topoisomerases I: 2. Comparison of enzyme interactions with specific and nonspecific oligonucleotides. Bioorg. Khim. 29, 275–288.

    Google Scholar 

  36. Schuster H. 1960. The method of reaction of deoxyribonucleic acid with nitrous acid. Z. Naturforsch. 15B, 298–304.

    CAS  Google Scholar 

  37. Vielmetter W., Schuster H. 1960. Base specificity in the induction of mutations by nitrous acid in phage T-2. Z. Naturforsch. 15B, 304–311.

    CAS  Google Scholar 

  38. Ishchenko A.A., Bulychev N.V., Zharkov D.O., Maksakova G.A., Johnson F., Nevinsky G.A. 1997. Isolation of 8-oxoguanine DNA glycosylase from E. coli and analysis of its substrate specificity. Mol. Biol. 31, 332–337

    CAS  Google Scholar 

  39. Handbook of Biochemistry and Molecular Biology: Nucleic Acids. Ed. Fasman G.D. Boca Raton, Florida: CRC Press, 1975.

    Google Scholar 

  40. Cox M.M., McEntee K., Lehman I.R. 1981. A simple and rapid procedure for the large scale purification of the RecA protein of Escherichia coli. J. Biol. Chem. 256, 4676–467.

    PubMed  CAS  Google Scholar 

  41. Bianco P.R., Weinstock G.M. 1996. Interaction of the RecA protein of Escherichia coli with single-stranded oligodeoxyribonucleotides. Nucleic Acids Res. 24, 4933–4939.

    Article  PubMed  CAS  Google Scholar 

  42. Leahy M.C., Radding C.M. 1986. Topography of the interaction of RecA protein with single-stranded deoxyoligonucleotides. J. Biol. Chem. 261, 6954–6960.

    PubMed  CAS  Google Scholar 

  43. Fersht A. 1984. Enzyme Structure and Mechanism. N.Y.: W.H. Freeman.

    Google Scholar 

  44. Saenger W. 1984. Principles of Nucleic Acid Structure. N.Y.: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 6, 2005, pp. 984–998.

Original Russian Text Copyright © 2005 by Bugreeva, Bugreev, Nevinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugreeva, I.P., Bugreev, D.V. & Nevinsky, G.A. Physicochemical Basis of RecA Filamentation on Single-Stranded DNA. Mol Biol 39, 862–875 (2005). https://doi.org/10.1007/s11008-005-0107-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0107-8

Key words

Navigation