Skip to main content
Log in

Spatial Organization of the Chicken α-Globin Gene Domain in Cells of Different Origins

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Hybridization with an oligonucleotide array was used to map the regions of DNA anchorage to the nuclear matrix. Matrix-associated DNA served as a hybridization probe. To obtain the oligonucleotide array, 60-mer oligonucleotides regularly distributed throughout the genome region of interest at 2-kb intervals were immobilized on a nylon filter. The organization of DNA into loop domains was studied in a 100-kb region of chicken chromosome 16, including the α -globin gene cluster. A 40-kb DNA loop, which was fixed to the nuclear matrix and harbored all α-globin genes, was observed in erythroid cells. One of its anchorage regions colocalized with matrix associated region (MAR) and an insulator found previously in the 5′ region of the chicken α-globin gene domain. The spatial (domain-loop) organization of the α-globin gene cluster in lymphoid cells proved to be strikingly different from that in erythroid cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Razin S.V., Petrov A., Hair A., Vassetzky Y.S. 2004. Chromatin domains and territories: Flexibly rigid. Crit. Rev. Eukaryot. Gene Expr. 14, 79–88.

    PubMed  Google Scholar 

  2. Vassetzky Y., Hair A., Mechali M. 2000. Rearrangement of chromatin domains during development in Xenopus. Genes Dev. 14, 1541–1552.

    PubMed  CAS  Google Scholar 

  3. Paulson J.R., Laemmli U.K. 1977. The structure of histone-depleted metaphase chromosomes. Cell. 12, 817–828.

    Article  PubMed  CAS  Google Scholar 

  4. Hancock R., Hughes M.E. 1982. Organization of DNA in the eukaryotic nucleus. Biol. Cell. 44, 201–212.

    CAS  Google Scholar 

  5. Buongiorno-Nardelli M., Gioacchino M., Carri M.T., Marilley M. 1982. A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature. 298, 100–102.

    Article  PubMed  CAS  Google Scholar 

  6. Razin S.V., Kekelidze M.G., Lukanidin E.M., Scherrer K., Georgiev G.P. 1986. Replication origins are attached to the nuclear skeleton. Nucleic Acids Res. 14, 8189–8207.

    PubMed  CAS  Google Scholar 

  7. Vassetzky Y.S., Hair A., Razin S.V. 2000. Rearrangement of chromatin domains in cancer and development. J. Cell Biochem. S35, 54–60.

    Google Scholar 

  8. Svetlova E.Y., Razin S.V., Debatisse M. 2001. Mammalian recombination hot spot and DNA loop anchorage region: A model for the study of common fragile sites. J. Cell Biochem. S36, 170–178.

    Google Scholar 

  9. Iarovaia O.V., Bystritskiy A., Ravcheev D., Hancock R., Razin S.V. 2004. Visualization of individual DNA loops and a map of loop-domains in the human dystrophin gene. Nucleic Acids Res. 32, 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  10. Razin S.V., Vassetzky Y.S., Hancock R. 1991. Nuclear matrix attachment regions and topoisomerase II binding and reaction sites in the vicinity of a chicken DNA replication origins. Biochem. Biophys. Res. Commun. 177, 265–270.

    Article  PubMed  CAS  Google Scholar 

  11. Boulikas T. 1993. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J. Cell Biochem. 52, 14–22.

    PubMed  CAS  Google Scholar 

  12. Vassetzky Y., Lemaitre J.M., Mechali M. 2000. Specification of chromatin domains and regulation of replication and transcription during development. Crit. Rev. Eukaryot. Gene Expr. 10, 31–38.

    PubMed  CAS  Google Scholar 

  13. Linskens M.H., Eijsermans A., Dijkwel P.A. 1987. Comparative analysis of DNA loop length in nontransformed and transformed hamster cells. Mutat. Res. 178, 245–256.

    PubMed  CAS  Google Scholar 

  14. Farache G., Razin S.V., Rzeszowska-Wolny J., Moreau J., Targa F.R., Scherrer K. 1990. Mapping of structural and transcription-related matrix attachment sites in the alpha-globin gene domain of avian erythroblasts and erythrocytes. Mol. Cell. Biol. 10, 5349–5358.

    PubMed  CAS  Google Scholar 

  15. Basler J., Hastie N.D., Pietras D., Matsui S., Sandgerg A.A., Berezney R. 1981. Hybridization of nuclear matrix attached deoxyribonucleic acid fragments. Biochemistry. 20, 6921–6929.

    Article  PubMed  CAS  Google Scholar 

  16. Razin S.V., Mantieva V.L., Georgiev G.P. 1979. The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes. Nucleic Acids Res. 7, 1713–1735.

    PubMed  CAS  Google Scholar 

  17. Jackson D.A., Dickinson P., Cook P.R. 1990. The size of chromatin loops in HeLa cells. EMBO J. 9, 567–571.

    PubMed  CAS  Google Scholar 

  18. Beug H., Doederlein G., Freudenstrein C., Graf T. 1979. Erythroblast cell lines transformed by a temperature sensitive mutant of avian erythroblastosis virus. A model system to study erythroid differentiation in vitro. J. Cell Physiol. 1, 195–207.

    Google Scholar 

  19. Rzeszowska-Wolny J., Razin S., Puvion E., Moreau J., Scherrer K. 1988. Isolation and characterization of stable nuclear matrix preparations and associated DNA from avian erythroblasts. Biol. Cell. 64, 13–22.

    Article  PubMed  CAS  Google Scholar 

  20. Razin S.V., Farrell C.M., Recillas-Targa F. 2003. Genomic domains and regulatory elements operating at the domain level. Int. Rev. Cytol. 226, 63–125.

    PubMed  CAS  Google Scholar 

  21. Recillas-Targa F., Razin S.V. 2001. Chromatin domains and regulation of gene expression: Familiar and enigmatic clusters of chicken globin genes. Crit. Rev. Eukaryot. Gene Expr. 11, 227–242.

    PubMed  CAS  Google Scholar 

  22. Razin S.V., Petrov P., Hancock R. 1991. Precise localization of the α-globin gene cluster within one of the 20-to 300-kilobase DNA fragment released by cleavage of chicken chromosomal DNA at topoisomerase II site in vivo: Evidence that the fragment are DNA loops or domains. Proc. Natl. Acad. Sci. USA. 88, 8515–8519.

    PubMed  CAS  Google Scholar 

  23. Jackson D.A., McCready S.J., Cook P.R. 1981. RNA is synthesized at the nuclear cage. Nature. 292, 552–555.

    PubMed  CAS  Google Scholar 

  24. Aelen J.M., Opstelsten R.J., Wanka F. 1983. Organization of DNA replication in Physarum polycephalum. Attachment of origins of replication and replication forks to the nuclear matrix. Nucleic Acids Res. 11, 1181–1195.

    PubMed  CAS  Google Scholar 

  25. Bickmore W.A., Oghene K. 1996. Visualizing the spatial relationships between defined DNA sequences and the axial region of extracted metaphase chromosomes. Cell. 84, 95–104.

    Article  PubMed  CAS  Google Scholar 

  26. Iarovaia O.V., Shkumatov P., Razin S.V. 2004. Breakpoint cluster regions of the AML-1 and ETO genes contain MAR elements and are preferentially associated with the nuclear matrix in proliferating HEL cells. J. Cell Sci. 117, 4583–4590.

    Article  PubMed  CAS  Google Scholar 

  27. Cremer T., Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301.

    Article  CAS  PubMed  Google Scholar 

  28. Ciejek E.M., Tsai M.-J., O'Malley B.W. 1983. Actively transcribed genes are associated with the nuclear matrix. Nature. 306, 607–609.

    Article  PubMed  CAS  Google Scholar 

  29. Cockerill P.N., Garrard W.T. 1986. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topo-isomerase II sites. Cell. 44, 273–282.

    Article  PubMed  CAS  Google Scholar 

  30. Cockerill P.N., Yuen M.-H., Garrard W.T. 1987. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem. 262, 5394–5397.

    PubMed  CAS  Google Scholar 

  31. Bode J., Schlake T., Rios-Ramirez M., Mielke C., Stengert M., Kay V., Klehr-Wirth D. 1995. Scaffold/matrix-attached regions: Structural properties creating transcriptionally active loci. Int. Rev. Cytol. 162A, 389–454.

    PubMed  CAS  Google Scholar 

  32. Iarovaia O.V., Hancock R., Lagarkova M.A., Miassod R., Razin S.V. 1996. Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome using the topoisomerase II-mediated DNA loop excision protocol. Mol. Cell. Biol. 16, 302–308.

    PubMed  CAS  Google Scholar 

  33. Razin S.V., Shen K., Ioudinkova E., Scherrer K. 1999. Functional analysis of DNA sequences located within a cluster of DNase I hypersensitive sites colocalising with MAR element at the upstream border of the chicken α-globin gene domain. J. Cell Biochem. 74, 38–49.

    Article  PubMed  CAS  Google Scholar 

  34. Valadez-Graham V., Razin S.V., Recillas-Targa F. 2004. CTCF-dependent enhancer blockers at the upstream region of the chicken alpha-globin gene domain. Nucleic Acids Res. 32, 1354–1362.

    Article  PubMed  CAS  Google Scholar 

  35. Razin S.V. 1987. DNA interaction with the nuclear matrix and spatial organization of replication and transcription. BioEssays. 6, 19–23.

    Article  PubMed  CAS  Google Scholar 

  36. Ratsch A., Joos S., Kioschis P., Lichter P. 2002. Topological organization of the MYC/IGK locus in Burkitt's lymphoma cells assessed by nuclear halo preparations. Exp. Cell Res. 273, 12–20.

    Article  PubMed  CAS  Google Scholar 

  37. Engel J.D., Dodgson J.B. 1980. Analysis of the closely linked adult chicken alpha-globin genes in recombinant DNAs. Proc. Natl. Acad. Sci. USA. 77, 2596–2600.

    PubMed  CAS  Google Scholar 

  38. Farache G., Razin S.V., Recillas Targa F., Scherrer K. 1990. Organization of the 3′-boundary of the chicken α-globin gene domain and characterization of a CR1-specific protein binding site. Nucleic Acids Res. 18, 401–409.

    PubMed  CAS  Google Scholar 

  39. Flint J., Tufarelli C., Peden J., Clark K., Daniels R.J., Hardison R., Miller W., Philipsen S., Tan-Un K.C., McMorrow T., Higgs D.R. 2001. Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Human Mol. Genet. 10, 371–382.

    CAS  Google Scholar 

  40. Ioudinkova E.S., Iarovaia O.V., Scherrer K., Razin S.V. 2001. Regulation of globin genes expression: New findings made with the chicken domain of alpha globin genes. Gene Ther. Mol. Biol. 6, 149–157.

    Google Scholar 

  41. Razin S.V., Rynditch A., Borunova V., Ioudinkova E., Smalko V., Scherrer K. 2004. The 33-kb transcript of the chicken alpha-globin gene domain is part of the nuclear matrix. J. Cell Biochem. 92, 445–457.

    Article  PubMed  CAS  Google Scholar 

  42. Sjakste N., Iarovaia O.V., Razin S.V., Linares-Cruz G., Sjakste T., Le Gac V., Zhao Z., Scherrer K. 2000. A novel gene is transcribed in the chicken alpha-globin gene domain in the direction opposite to the globin genes. Mol. Gen. Genet. 262, 1012–1021.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 6, 2005, pp. 971–977.

Original Russian Text Copyright © 2005 by Ioudinkova, Petrov, Vassetzky, Razin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioudinkova, E.S., Petrov, A.V., Vassetzky, Y.S. et al. Spatial Organization of the Chicken α-Globin Gene Domain in Cells of Different Origins. Mol Biol 39, 851–856 (2005). https://doi.org/10.1007/s11008-005-0105-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0105-x

Key words

Navigation