Skip to main content
Log in

Interaction of the Carlavirus Cysteine-Rich Protein with the Plant Defense System

  • Miscellaneous
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The genome of viruses of the genus Carlavirus codes for a small cysteine-rich protein (CRP) with unknown functions. To study the role of CRP of the chrysanthemum virus B (CVB), a recombinant potato virus X (PVX) genome containing the CVB CRP gene was constructed. Expression of CVB CRP in the PVX genetic surrounding drastically changed the character of symptoms produced by PVX in Nicotiana benthamiana. The recombinant virus caused local necrotic lesions of inoculated leaves and necrosis of apical leaves rather than asymptomatic infection and mild mosaic, which are caused by PVX in this host plant. In N. tabacum, the infection pattern depended on the plant host genotype: recombinant PVX spread systemically only in plants carrying the N gene. Agroinfiltration-mediated transient expression assays showed that CRP neither acts as an avirulence factor in N. benthamiana nor suppresses posttranscriptional gene silencing. CVB CRP was identified as a virus pathogenicity determinant that controls the interaction of the virus with the host plant in a way that depends on plant defense, which is mediated by resistance genes such as the N gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adams M.J., Antoniw J.F., Bar-Joseph M., Brunt A.A., Candresse T., Foster G.D., Martelli G.P., Milne R.G., Zavriev S.K., Fauquet C.M. 2004. The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch. Virol. 149, 1045–1060, 1672.

    PubMed  CAS  Google Scholar 

  2. Levay K., Zavriev S. 1991. Nucleotide sequence and gene organization of the 3′-terminal region of chrysanthemum virus B genomic RNA. J. Gen. Virol. 72, 2333–2337.

    PubMed  Google Scholar 

  3. Koonin E.V., Dolja V.V. 1993. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28, 375–430.

    PubMed  CAS  Google Scholar 

  4. Morozov S.Yu., Solovyev A.G. 2003. Triple gene block: Modular design of a multifunctional machine for plant virus movement. J. Gen. Virol. 84, 1351–1366.

    Article  PubMed  CAS  Google Scholar 

  5. Koonin E.V., Boyko V.P., Dolja V.V. 1991. Small cysteine-rich proteins of different groups of plant RNA viruses are related to different families of nucleic acid-binding proteins. Virology. 181, 395–398.

    Article  PubMed  CAS  Google Scholar 

  6. Diao A., Chen J., Ye R., Zheng T., Shanquan Y., Antoniw J.F., Adams M.J. 1999. Complete sequence and genome properties of Chinese wheat mosaic virus, a new furovirus from China. J. Gen. Virol. 80, 1141–1145.

    PubMed  CAS  Google Scholar 

  7. Donald R.G., Jackson A.O. 1996. RNA-binding activities of barley stripe mosaic virus gamma b fusion proteins. J. Gen. Virol. 77, 879–888.

    Article  PubMed  CAS  Google Scholar 

  8. Liu H., Reavy B., Swanson M., MacFarlane S.A. 2002. Functional replacement of the tobacco rattle virus cysteine-rich protein by pathogenicity proteins from unrelated plant viruses. Virology. 298, 232–239.

    Article  PubMed  CAS  Google Scholar 

  9. Bragg J.N., Lawrence D.M., Jackson A.O. 2004. The N-terminal 85 amino acids of the Barley stripe mosaic virus γb pathogenesis protein contain three zinc-binding motifs. Virology. 14, 7379–7391.

    Google Scholar 

  10. Donald R.G., Jackson A.O. 1994. The Barley stripe mosaic virus γb gene encodes a multifunctional cysteine-rich protein that affects pathogenesis. Plant Cell. 6, 1593–1606.

    Article  PubMed  CAS  Google Scholar 

  11. Hehn A., Bouzoubaa S., Bate N., Twell D., Marbach J., Richards K., Guilley H., Jonard G. 1995. The small cysteine-rich protein P14 of beet necrotic yellow vein virus regulates accumulation of RNA 2 in cis and coat protein in trans. Virology. 210, 73–81.

    Article  PubMed  CAS  Google Scholar 

  12. Dunoyer P., Pfeffer S, Fritsch C., Hemmer O., Voinet O., Richards K. 2002. Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J. 29, 555–567.

    Article  PubMed  CAS  Google Scholar 

  13. Bragg J.N., Jackson A.O. 2004. The C-terminal region of the Barley stripe mosaic virus γb protein participates in homologous interactions and is required for suppression of RNA silencing. Mol. Plant. Pathol. 5, 465–481.

    Article  CAS  Google Scholar 

  14. Yelina N.E., Savenkov E.I., Solovyev A.G., Morozov S.Y., Valkonen J.P. 2002. Long-distance mouvement, virulence, and RNA silencing suppression controlled by a single protein in hordei-and potyviruses: Complementary functions between virus families. Virology. 76, 12981–12991.

    CAS  Google Scholar 

  15. Ratcliff F., Harrison B., Baulcombe D. 1997. A similarity between viral defense and gene silencing in plants. Science. 276, 1558–1560.

    Article  CAS  Google Scholar 

  16. Brigneti G., Voinnet O., Li W.-X., Ji L.-H., Ding S.-W., Baulcombe D. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746.

    Article  PubMed  CAS  Google Scholar 

  17. Gramstat A., Courtpozanis A., Rohde W. 1990. The 12 kDa protein of potato virus M displays properties of a nucleic acid binding protein. FEBS Lett. 276, 34–38.

    Article  PubMed  CAS  Google Scholar 

  18. Yelina N.E., Erokhina T.N., Lukhovitskaya N.I., Minina E.A., Schepetilnikov M.V., Lesemann D.-E., Schiemann J., Solovyev A.G., Morozov S.Yu. 2005. Localization of Poa semilatent virus cysteine-rich protein in peroxisomes is dispensable for its ability to suppress RNA silencing. J. Gen. Virol. 86, 479–489.

    Article  PubMed  CAS  Google Scholar 

  19. Hammond-Kosack K.E., Staskavicz B.J., Jones J.D.G., Baulcombe D.C. 1995. Functional expression of a fungal avirulence gene from a modified potato virus X genome. Mol. Plant-Microbe Interact. 8, 181–185.

    CAS  Google Scholar 

  20. Tang X., Frederick R.D., Zhou J., Halterman D.A., Jia Y., Martin G.B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science. 274, 2060–2062.

    Article  PubMed  CAS  Google Scholar 

  21. Crameri A., Whitehorn E.A., Tate E., Stemmer W.P.C. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14, 315–319.

    Article  CAS  Google Scholar 

  22. Johansen L.K., Carrington J.C. 2001. Silencing on the spot. Induction and suppression of rna silencing in the agrobacterium-mediated transient expression system. Plant Physiol. 126, 930–938.

    Article  PubMed  CAS  Google Scholar 

  23. Voinnet O., Lederer C., Baulcombe D.C. 2000. A viral movement protein prevents spread of the gene silencing signal in iNicotiana benthamiana. Cell. 103, 157–167.

    Article  PubMed  CAS  Google Scholar 

  24. Padgett H.S. Watanabe Y., Beachy R.N. 1997. Identifcation of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol. Plant-Microbe Interact. 10, 709–715.

    CAS  Google Scholar 

  25. Hammond-Kosack K.E., Jones J.D.G. 1996. Resistance gene-dependent plant defence responses. Plant Cell. 8, 1773–1791.

    Article  PubMed  CAS  Google Scholar 

  26. Voinnet O., Pinto Y.M., Baulcombe D.C. 1999. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA. 96, 14147–14152.

    Article  PubMed  CAS  Google Scholar 

  27. Dalmay T., Hamilton A., Rudd S., Angell S., Baulcombe D.C. 2000. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 101, 543–553.

    Article  PubMed  CAS  Google Scholar 

  28. Canto T., MacFarlane S.A., Palukaitis P. 2004. ORF6 of tobacco mosaic virus is a determinant of viral pathogenicity in Nicotiana benthamiana. J. Gen. Virol. 85, 3123–3133

    Article  PubMed  CAS  Google Scholar 

  29. Lucy A.P., Guo H.S., Li W.X., Ding S.W. 2000. Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J. 19, 1672–1680.

    Article  PubMed  CAS  Google Scholar 

  30. Abbink T.E.M., Tjernberg P.A., Bol J.F., Linthorst J.M. 1998. Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol. Plant-Microbe Interact. 11, 1242–1246.

    CAS  Google Scholar 

  31. Liu, Y., Schiff, M., Marathe, R., Dinesh-Kumar S.P. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y., Schiff M., Serino G., Deng X.-W., Dinesh-Kumar S.P. 2004. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell. 14, 1483–1496.

    Google Scholar 

  33. Liu Y., Schiff M., Dinesh-Kumar S.P. 2004. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 38, 800–809.

    Article  PubMed  CAS  Google Scholar 

  34. Jin H., Liu Y., Yang K.-Y., Kim C.Y., Baker B., Zhang S. 2003. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J. 33, 719–731.

    Article  PubMed  CAS  Google Scholar 

  35. Hatsugai N., Kuroyanagi M., Yamada K., Meshi T., Tsuda S., Kondo M., Nishimura M., Hara-Nishimura I. 2004. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science. 305, 855–858.

    Article  PubMed  CAS  Google Scholar 

  36. Rojo E., Martin R., Carter C., Zouhar J., Pan S., Plotnikova J., Jin H., Paneque M., Sanchez-Serrano J.J., Baker B., Ausubel F.M. Raikhel N.V. 2004. VPEγ exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14, 1897–1906.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 896–904.

Original Russian Text Copyright © 2005 by Lukhovitskaya, Solovyev, Koshkina, Zavriev, Morozov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukhovitskaya, N.I., Solovyev, A.G., Koshkina, T.E. et al. Interaction of the Carlavirus Cysteine-Rich Protein with the Plant Defense System. Mol Biol 39, 785–791 (2005). https://doi.org/10.1007/s11008-005-0094-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0094-9

Key words

Navigation