Skip to main content
Log in

Analysis of Mutation Mechanisms in Human Mitochondrial DNA

  • Molecular Mechanisms of Biological Processes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The cause of the high variability of human mitochondrial DNA (mtDNA) remains largely unknown. Three mechanisms of mutagenesis that might account for the generation of nucleotide substitutions in mtDNA have been analyzed: deamination of DNA nitrous bases caused by deamination agents, tautomeric proton migration in nitrous bases, and the hydrolysis of the glycoside bond between the nitrous base and carbohydrate residue in nucleotides against the background of the free-radical damage of DNA polymerase γ. Quantum chemical calculations demonstrated that the hydrolysis of the N-glycoside bond is the most probable mechanism; it is especially prominent in the H strand, which remains free during mtDNA replication for a relatively long time. It has also been found that hydrolytic deamination of adenine in single-stranded regions of the H strand is a possible cause of the high frequency of T → C transitions in the mutation spectra of the L-chain of the major mtDNA noncoding region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wallace D.C. 1999. Mitochondrial diseases in man and mouse. Science. 283, 1482–1488.

    Article  PubMed  CAS  Google Scholar 

  2. Budowle B., Wilson M.R., DiZinno J.A., Stauffer C., et al. 1999. Mitochondrial DNA regions HV I and HV II population data. Forensic Sci. Int. 103, 23–35.

    Article  PubMed  CAS  Google Scholar 

  3. Malyarchuk B.A., Rogozin I.B. 2004. Mutagenesis by transient misalignment in human mitochondrial DNA control region. Ann. Hum. Genet. 68, 324–339.

    Article  PubMed  CAS  Google Scholar 

  4. Marcelino L.A., Thilly W.G. 1999. Mitochondrial mutagenesis in human cells and tissues. Mutat. Res. 434, 177–203.

    PubMed  CAS  Google Scholar 

  5. Gaeva E.B., Narezhnaya E.V., Kornienko I.V. 2004. Determining mutagenic activity using an example of interaction between DNA bases and nitrous acid. Klin. Lab. Diagn. 1, 16–18.

    Google Scholar 

  6. Clark T. 1990. Computer Chemistry (Russian translation). Moscow: Mir.

    Google Scholar 

  7. Stewart J.J.P. 1989. Optimization of parameters for semiempirical methods: 1. Method. J. Comput. Chem. 10, 209.

    CAS  Google Scholar 

  8. Stewart J.J.P. 1989. Optimization of parameters for semiempirical methods: 2. Applications. J. Comput. Chem. 10, 221.

    CAS  Google Scholar 

  9. Schmidt M., Baldridge K.K., Boatz J.A., et al. 1993. J. Comput. Chem. 14, 1347 (package of ab initio programs GAMESS, Version 5.0, 1998).

    Article  CAS  Google Scholar 

  10. Tanaka M., Ozawa T. 1994. Strand asymmetry in human mitochondrial DNA mutations. Genomics. 22, 327–335.

    Article  PubMed  CAS  Google Scholar 

  11. Brown W.M., George M., Wilson A.C. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 76, 1967–1971.

    PubMed  CAS  Google Scholar 

  12. Strack H.B., Freese E.B., Freese E. 1964. Comparison of mutation and inactivation rates induced in bacteriophage and transforming DNA by various mutagens. Mutat. Res. 1, 10–21.

    CAS  Google Scholar 

  13. Soyfer V.N. 1969. Molekulyarnye mekhanizmy mutageneza (Molecular Mechanisms of Mutagenesis). Moscow: Nauka.

    Google Scholar 

  14. Ashmarin I.P. 1974. Molekulyarnaya biologiya (Molecular Biology). Leningrad: Meditsina, pp. 186–191.

    Google Scholar 

  15. Kochetkov N.K., Budovskii E.I., Sverdlov E.D., et al. 1970. Organicheskaya khimiya nukleinovykh kislot (Organic Chemistry of Nucleic Acids). Moscow: Khimiya.

    Google Scholar 

  16. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature. 362, 709–715.

    Article  PubMed  CAS  Google Scholar 

  17. Krishnan N.M., Raina S.Z., Pollock D.D. 2004. Analysis of among-site variation in substitution patterns. Biol. Proced. Online. 6, 180–188.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts J., Casserio M. 1978. Fundamentals of Organic Chemistry [Russian translation]. Moscow: Mir, vol. 2.

    Google Scholar 

  19. Cantor C.R., Schimmel P.R. 1980. Biophysical Chemistry. San Francisco: W. H. Freeman.

    Google Scholar 

  20. Watson J.D., Baker T.A., Bell S.P., Gann A., Levine M., Losick R. 2004. Molecular Biology of the Gene. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press.

    Google Scholar 

  21. Ladik J. 1975. Quantum Biochemistry for Chemists and Biologists [Russian translation]. Moscow: Mir.

    Google Scholar 

  22. Brown T.A. 1994. DNA Sequencing. Oxford: IRL Press.

    Google Scholar 

  23. Graziewicz M.A., Day B.J., Copeland W.C. 2002. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 30, 2817–2824.

    Article  PubMed  CAS  Google Scholar 

  24. Clayton D.A. 1991. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7, 453–478.

    Article  PubMed  CAS  Google Scholar 

  25. Freese E.B. 1961. Transitions and transversions induced by depurination agents. Proc. Natl. Acad. Sci. USA. 47, 540–545.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 869–877.

Original Russian Text Copyright © 2005 by Kornienko, Malyarchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornienko, I.V., Malyarchuk, B.A. Analysis of Mutation Mechanisms in Human Mitochondrial DNA. Mol Biol 39, 761–768 (2005). https://doi.org/10.1007/s11008-005-0091-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0091-z

Key words

Navigation