Skip to main content

Isolation and Expression Profiling of the Pto-Like Gene SsPto from Solanum surattense


A novel Pto-like gene (designated as SsPto) is cloned from yellow-fruit nightshade (Solanum surattense). The full-length cDNA of SsPto is 1331 bp long with an open reading frame of 960 bp encoding a polypeptide of 320 amino acid residues. The deduced SsPto protein has a calculated molecular weight of 36.21 kDa with an isoelectric point of 6.18. Multiple sequence alignment shows that the SsPto protein shares 71.4% and 71.6% identities with Pto proteins from Lycopersicon pimpinellifolium and L. hirsutum, respectively. Genomic Southern blot analysis indicates the presence of a small family of SsPto in the S. surattense genome. SsPto is found to be constitutively expressed in the S. surattense plant with the highest expression in stems. However, under induction by TMV for 6 days, SsPto is expressed the highest in roots. Further expression analysis reveals that the signaling components of defense/stress pathways, such as methyl jasmonate (MeJA), salicylic acid (SA), gibberellic acid (GA3), and hydrogen peroxide (H2O2), up-regulate the SsPto transcript levels over the control. Nevertheless, cold treatment has no significant effect on SsPto expression, whereas SsPto expression is down-regulated by dark treatment. Our findings suggest that this novel stress- and pathogen-inducible SsPto from S. surattense may participate not only in the defense/stress responsive pathways, but also in diverse processes of plant growth and development.

This is a preview of subscription content, access via your institution.


  1. 1.

    Crute I.R. 1986. The genetic basis of relationships between microbial parasites and their hosts. In: Mechanisms of Resistance in Plant Diseases. Ed. Fraser R.S.S. Dordrecht: Martinus, Nijhoff, and Junk Press, pp. 80–142.

    Google Scholar 

  2. 2.

    Jones J.B. 1991. Bacterial speck. In: Compendium of Tomato Diseases. Eds. Jones J.B., Jones J.P., Stall R.E., Zitter T.A. St. Paul: MN APS Press, pp. 26–27.

    Google Scholar 

  3. 3.

    Young D.W., Wilkie J.P. 1986. Bacterial speck. In: Vegetable Diseases and Their Control. Ed. Sherf A.F. N.Y.: Wiley, pp. 610–614.

    Google Scholar 

  4. 4.

    Schneider R.W., Grogan R.G. 1977. Bacterial speck of tomato: Sources of inoculum and establishment of a resident population. Phytopathology. 67, 388–394.

    Google Scholar 

  5. 5.

    Jardine D.J. 1987. Influence of timing of application and chemical on control of bacterial speck of tomato. Plant Dis. 71, 405–408.

    CAS  Google Scholar 

  6. 6.

    Flor H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275–296.

    Article  Google Scholar 

  7. 7.

    Smi F., Dubery I.A. 1997. Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry. 44, 811–815.

    Google Scholar 

  8. 8.

    Fritig B., Heitz T., Legrand M. 1998. Antimicrobial proteins in induced plant defense. Curr. Opin. Immunol. 10, 16–22.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Grant M., Mansfield J. 1999. Early events in host-pathogen interactions. Curr. Opin. Plant Biol. 2, 312–319.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Hill M.K., Lyon K.J., Lyon B.R. 1999. Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol. Biol. 40, 289–296.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Cui Y., Bell A.A., Joost O., Magill C. 2000. Expression of potential defense response genes in cotton. Physiol. Mol. Plant. 56, 25–31.

    CAS  Google Scholar 

  12. 12.

    De Wit P.J.G.M., Joosten M.H.A.J. 1999. Avirulence and resistance genes in the Cladosporium fulvum-tomato interaction. Curr. Opin. Microbiol. 2, 368–373.

    PubMed  Google Scholar 

  13. 13.

    Astua-Monge G., Minsavage G.V., Stall R.E., Davis M.J., Bonas U., Jones J.B. 2000. Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. Mol. Plant-Microbe Interact. 13, 911–921.

    PubMed  CAS  Google Scholar 

  14. 14.

    Luderer R., Takken F.L., De Wit P.J., Joosten M.H. 2002. Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol. Microbiol. 45, 875–884.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Hammond-Kosack K.E., Jones J.D.G. 2000. Responses to plant pathogens. In: Biochemistry and Molecular Biology of Plants. Eds. Buchanan B.B., Gruissem W., Jones R.L. Rockville, MD: Am. Soc. Plant Physiol., pp. 1102–1156.

    Google Scholar 

  16. 16.

    Hammond-Kosack K.E., Jones J.D.G. 1997. Plant disease resistance genes. Annu. Rev. Plant Physiol. Mol. Biol. 48, 575–607.

    Article  CAS  Google Scholar 

  17. 17.

    Pedley K.F., Martin G.B. 2003. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu. Rev. Phytopathol. 41, 215–243.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Martin G.B., Brommonschenkel S.H., Chunwongse J., Frary A., Ganal M.W., Spivey R., Wu T.Y., Earle E.D., Tanksley S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 262, 1432–1436.

    PubMed  CAS  Google Scholar 

  19. 19.

    Riely B.K., Martin G.B. 2001. Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proc. Natl. Acad. Sci. USA. 98, 2059–2064.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Blom N., Gammeltoft S., Brunak S. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Resh M.D. 1990. Membrane interactions of pp60v-src: A model for myristylated tyrosine protein kinases. Oncogene. 5, 1437–1444.

    PubMed  CAS  Google Scholar 

  22. 22.

    Kataoka M., Mihara K., Tokunaga F. 1993. Recoverin alters its surface properties depending on both calcium-binding and N-terminal myristylation. J. Biochem. 114, 535–540.

    PubMed  CAS  Google Scholar 

  23. 23.

    Loh Y.T., Zhou J., Martin G.B. 1998. The myristylation motif of Pto is not required for disease resistance. Mol. Plant-Microbe Interact. 11, 572–576.

    PubMed  CAS  Google Scholar 

  24. 24.

    Loh Y.T., Martin G.B. 1995. The Pto bacterial resistance gene and the Fen insecticide sensitivity gene encode functional protein kinases with serine/threonine specificity. Plant Physiol. 108, 1735–1739.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Martin G.B., Bogdanove A.J., Sessa G. 2003. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23–61.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Saraste M., Sibbald P.R., Wittinghofer A. 1990. The P-loop: A common motif in ATP-and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434.

    PubMed  Google Scholar 

  27. 27.

    Durner J., Shah J., Kessig D.F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2, 266–274.

    Article  Google Scholar 

  28. 28.

    Dong X. 1998. SA, JA, ethylene and disease in plants. Curr. Opin. Plant Biol. 1, 316–323.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Hanks S.K., Hunter T. 1995. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596.

    PubMed  CAS  Google Scholar 

  30. 30.

    Sessa G., D'Ascenzo M., Loh Y.T., Martin G.B. 1998. Biochemical properties of two protein kinases involved in disease resistance signaling in tomato. J. Biol. Chem. 273, 15860–15865.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Gu Y.Q., Yang C., Thara V.K., Zhou J., Martin G. B. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell. 12, 771–785.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Sessa G., D'Ascenzo M., Martin G.B. 2000. Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto-Pto-mediated hypersensitive response. EMBO J. 19, 2257–2269.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Ronald P.C. 1998. Resistance gene evolution. Curr. Opin. Plant Biol. 1, 294–298.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Ryals J.A., Neuenschwander U.H., Willits M.G., Molina A., Steiner H.Y., Hunt M.D. 1996. Systemic acquired resistance. Plant Cell. 8, 1809–1819.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., Ryals J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 261, 745–756.

    Google Scholar 

  36. 36.

    Delaney T.P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gutrella M., Kessmann H., Ward E., Ryals J. 1994. A central role of salicylic acid in plant disease resistance. Science. 266, 1247–1250.

    CAS  PubMed  Google Scholar 

  37. 37.

    Creelman R.A., Rao M.V. 2002. The oxylipin pathway in Arabidopsis. In: The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. doi10.1199/tab.0012, American Society of Plant Biologists.

  38. 38.

    Wasternack C., Hause B. 2002. Jasmonates and octadecanoids: signals in plant stress responses and development. Progr. Nucleic. Acids Res. Mol. Biol. 72, 165–221.

    CAS  Google Scholar 

  39. 39.

    Wasternack C., Parthier B. 1997. Jasmonate-signalled plant gene expression. Trends Plant Sci. 2, 302–307.

    Article  Google Scholar 

  40. 40.

    Farmer E.E., Ryan C.A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell. 4, 129–134.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Sembdner G., Parthier B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Biol. 44, 569–589.

    CAS  Google Scholar 

  42. 42.

    Creelman R.A., Mullet J.E. 1995. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA. 92, 4114–4119.

    PubMed  CAS  Google Scholar 

  43. 43.

    Farmer E.E., Johnson R.R., Ryan C.A. 1992. Regulation of expression of proteinase-inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98, 995–1002.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Blechert S., Brodschelm W., Holder S., Kammerer L., Kutchan T.M., Mueller M.J., Xia Z.Q., Zenk M.H. 1995. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA. 92, 4099–4105.

    PubMed  CAS  Google Scholar 

  45. 45.

    Nojiri H., Sugimori M., Yamane H., Nishimura Y., Yamada A., Shibuya N., Kodama O., Murofushi N., Omori T. 1996. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 110, 387–392.

    PubMed  CAS  Google Scholar 

  46. 46.

    Tamogami S., Rakwal R., Kodama O. 1997. Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett. 401, 239–242.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Kuroyanagi M., Arakawa T., Mikami Y., Yoshida K., Kawahar N., Hayashi T., Ishimaru H. 1998. Phytoalexins from hairy roots of Hyoscyamus albus treated with methyl jasmonate. J. Nat. Prod. 61, 1516–1519.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Muhlenweg A., Melzer M., Li S.M., Heide L. 1998. 4-Hydroxybenzoate 3-geranyltransferase from Lithospermum erythrorhizon: Purification of a plant membrane-bound prenyltransferase. Planta. 205, 407–413.

    PubMed  CAS  Google Scholar 

  49. 49.

    Birkenmeier G.F., Ryan C.A. 1998. Wound signaling in tomato plants: Evidence that ABA is not a primary signal for defense gene activation. Plant Physiol. 117, 687–693.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Lamb C., Dixon R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Biol. 48, 251–275.

    CAS  Google Scholar 

  51. 51.

    Levine A., Tenhaken R., Dixon R., Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Mysore K.S., Crasta O.R., Tuori R.P., Folkerts O., Swirsky P.B., Martin G.B. 2002. Comprehensive transcript profiling of Pto-and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J. 32, 299–315.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information



Additional information


From Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 786–798.

Original English Text Copyright © 2005 by Beibei Huang, Xiaojun Liu, Xinglong Wang, Yan Pi, Juan Lin, Jiong Fei, Xiaofen Sun, Kexuan Tang.

This text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, B., Liu, X., Wang, X. et al. Isolation and Expression Profiling of the Pto-Like Gene SsPto from Solanum surattense . Mol Biol 39, 684–695 (2005).

Download citation

Key words

  • Defense/stress
  • Pseudomonas syringae pv. tomato
  • RACE
  • SsPto
  • S. surattense